

Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association

b-tu

Brandenburg University of Technology Cottbus - Senftenberg

Characterisation of nonirradiated and irradiated diamond sensors before and after application at LHC

Martin Stegler

Diamond Sensors in High Energy Physics

Large Hadron Collider LHC at European organisation for Nuclear Research CERN

- Protons or heavy ions are accelerated in opposite direction
- At four locations the beams intersect to allow collision

INNER TRACKER

RETURN YOKE

MUON CHAMBERS

SUPERCONDUCTING COIL

14,500 t.

14.60 m

21.60 m

4 Tesla

Total Weight

Overall diameter

Overall length

Magnetic field

- Very high particle flux and energies at LHC

CRYSTAL ECAL

HCAL

Diamond Sensors in High Energy Physics

CMS installed several independent subdetectors for Beam and Radiation Instrumentation and Luminosity measurements (BRIL):

safety: less beam losses → less damage to the experiments sub detectors
 performance: more luminosity and less background → better data

BCM1F

scCVD Diamond

- low leakage current and radiation hard
 → used as solid state ionization chamber for particle detection in high radiation enviroment

Property	Diamond	Silicon	Units	Results for diamond	
Band gap	$5.5_{}$	1.12	eV	insulator	
Specific resistance	$> 10^{11}$	$6.4 \cdot 10^{2}$	$\Omega { m cm}$	low leakage current	
Breakdown field	20	0.3	$\mathrm{MV/cm}$	high bias voltage possible	
Electron mobility	4500	1450	${ m c}m^2/{ m Vs}$	– fast signal	
Hole mobility	3800	480	$\mathrm{c}m^2/\mathrm{Vs}$		
Displacement energy	43	< 20	eV per atom	radiation hard	
Thermal conductivity	2000	150	$Wm^{-1}K^{-1}$	heat spreader	
Energy to create e-h pair	13	3.61	eV	- low signal	
Aver. signal created	3602	8892	e_0 per 100 µm		

working principle of a diamond detector

$$-\left(\frac{dE}{dX}\right) = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta\left(\beta\gamma\right)}{2}\right]$$

optical characterisation

optical characterisation

electrical measurements

Done to observe the leakage current of the diamond sensor.

- lower leakage current better signal to noise ratio

electrical measurements

Oberserve the stability of the signal current of a diamond sensor under continously particle flux.

metallizations

 first measured with one pad metallization then remeasured after remetallization with two pads

11

metallizations

 first measured with one pad metallization then remeasured after remetallization with two pads

Charge Collection Efficiency CCE

- working principle like a solid state ionisation chamber
- triggered on minimum ionizing particles from ⁹⁰Sr
- \rightarrow quantity of generated e-h pairs is known

$$CCE = Q_m/Q_c$$

$$Q_c = \rho_{MIP} \cdot d \cdot sr_{corr}$$

Charge Collection Efficiency CCE

radiation damage

- radiation damage consists of lattice defects like vacancies and dislocations
 - creates intermediate band gap states

Trapping

- free charges can be trapped by intermediate band gap states
- trapped charges are released by intrinsic effects or by recombination
- \rightarrow equilibrium between filled and free traps

radiation damage

Polarization

- generated electron-hole pairs are seperated by an external electrical field
- unevenly distributed free charges were trapped
- \rightarrow unevenly distributed fixed charges¹
 - \rightarrow internal electrical field

(Sergej Schuwalow 15.12.2009, GSI talk, "Large bandgap solid-state sensors – some new developments")

electrical measurements after irradiation

Irradiated diamond sensors from BCM1F installed from 2008 to 2014 show still <u>low leakage currents</u> and <u>stable signal currents</u>.

signal current after irradiation

After ramping from 0V to 500V polarization builds up about over several hours.

CCE after irradiation

CCE is decreased by trapping and polarization after irradiation.

CCE after irradiation

further investigation on radiation damage

- assumption intermediate band gaps states near the conduction band
- a photon lifts a trapped charge to conduction band if:

 $E_p > \Delta E$ $E_p = h \cdot \frac{c}{\lambda}$ $\Delta E = E_c - E_t$

 - equilibrium between filled and free traps shifted to more free trapps
 → polarization decreased

CCE dependence on intensity and energy of Light

zero intensity – no light higher intensities – more trapped charges released, less polarization effects lower wavelength – higher photon energy, more trapped charges released

Transient Current Measurement

Transient Current Measurement

Conclusion

- 64 non-irradiated diamond sensors where characterized optically and electrically for the upgrade of BCM1F
- 36 sensors fulfil the criteria to be used at BCM1F
- studies on different metallizations were done
- process of metallization can cause problems

comparrison of irradiated and non-irradiated diamond sensors
 signal current and CCE is reduced after irradiation

- method using light to mitigate irradiation based effects

- CCE increase depends on wavelength and intensity of light

- TCT signal become larger under illumination

Conclusion

C-Shape

Bethe Bloch - scCVD diamond

C-Shape

Confocal Microscope

Diamond Sensor in Frame

Signal Measurments

Pedestal Measurments

Calibration, ADCv965 Ch5, VM-USB

Calibration, Signal & Pedestal

Backup II

Backup I

CCE for two lightsources and with alternating polarity

64 diamond sensors		2 OP
	16 CrAu	10 TP
		4 both
	46 WTi	$42 \mathrm{TP}$
	40 11	4 both
	2 both	$2 \mathrm{TP}$

