# Firmware structure and adaptation for CW operation

Radoslaw Rybaniec on behalf of the LLRF Team

MSK Collaboration Workshop June 2015, Warsaw









# **CW@CMTB** System overview









# **LLRF** Requirements

- Stabilize amplitude/phase of VS (RF Controller)
- Compensate for the microphonics noise, keep cavity at the resonance (Piezo Controller)
- Simultaneous stabilization of the RF and detuning compensation

CW!



Firmware struct

## Comparison CW vs. Pulsed Mode

#### High Loaded Q is used in CW mode

- narrow bandwidth of the cavities (QL=3e6:433Hz, QL=1e7:130Hz)
- higher influence of the microphonics on the field stability in open-loop

#### Lorentz Force Detuning

- LFD can be treated as time invariant and easily compensated

#### Learning Feed Forward

- currently used LFF is no applicable CW mode
- is it needed?

#### RF Controller design

- PI controller can be effectively used
- FF tables can be used In addition

#### CW there is no time space for off line calculation

controller algorithms have to be implemented in the FPGA







# **Microphonics (RF off)**









# **IOT Phase vs LLRF output**



courtesy by W. Cichalewski







# **IOT Amplitude LLRF output**



courtesy by W. Cichalewski







# **IOT** noise (FB off)









# **Current experiences**

#### PI controller for the RF field

- works correctly
- nonlinear behavior of the IOT + noise observed

#### Piezo controller

- simplified detuning estimate
- PI controller
- feedback is not very effective (2xsuppression)

### Piezo and RF controllers fighting with each other

- IOT, noise, nonlinearities
- detuning computation









# **Detuning computation comparison**

#### Phase difference method

- sensitive to the forward phase changes
- simple
- only forward/probe phases needed

#### Model based estimation

- not sensitive to the IOT nonlinearities
- more complicated algorithm
- input signals calibration needed
- forward/reflected/probe signals needed
- verified at FLASH for one cavity at time









#### Firmware modifications for the June 2015 CW tests

- I, Q, Phase are sent from the SIS boards to the TCK7 via LLL
  - 1MHz
  - Prefiltered
- DAQ memory is extended to the 32 channels and 256k points
  - First 8 channels same as in pulsed FW
  - 16 is used for the detuning computation with the simple method and from the model
  - last 8 channels for the on-line halfbandwidth monitoring
  - additional memory page is provided so that no data is lost
- Memory for the Piezo identification
  - 32kx16bits
  - double buffered, switching synchronized with main trigger so v. long identification sequences are possible
  - switchable output (one or many outputs)







# **DMA readout for CW**









## **DMA readout for CW**









# **Proposed features of the firmware**

#### RF Controller

- linearizion of the IOT
- feedback on the forward signals (nonlinearities, 50Hz noise)

#### Detuning controller

- should be based on cavity model detuning computation
- more advanced controller should be used for detuning
  - modeling needed
- Piezo sensor information should be considered









## **Thanks for attention!**

- V. Ayvazyan
- J. Branlard
- L. Butkowski
- W. Cichalewski
- A. Piotrowski
- K.Przygoda
- J. Sekutowicz







