Update on TCAD Simulations of CMOS Sensors

Mathieu Benoit, Francesco Di Bello (Uni Geneva) Matthew Buckland, **Lingxin Meng** (Uni Liverpool) Vagelis Gkougkousis (LAL) Mahmoud Joz Tavassoli (CERN)

> CMOS Strip Meeting CERN, 09 Jun. 2015

- Geometric structure
- Depletion and field properties
- Radiation effects
- Back biasing
- Transient simulation with a MIP
- Summary and outlook

- VSS: 0.0 V
- VDD: 3.3 V
- HV: 0 -200 V

- Resistivity: 20, 80, 200, 1000 Ωcm
- Fluence: 0, 1e14, 1e15, 1e16 n_{eq}
- Top bias without back process
- Back bias with floating top contacts

- Estimated large capacitance
- Discontinuous n-wells to reduce capacitance

Extra deep p-well (M. Benoit in comm. with AMS)

Inverting DNTUB mask

VERPOOL

Same doping concentration as DNTUB

Depletion Depth

UNIVERSITY OF LIVERPOOL

Fill Factor

LIVERPOOL

IV Curve

Back Bias

Electric Field (0neq_1010shm_-120V)

- 1000 Ωcm @ -120 V
- Top contacts set to floating
- Back processing with shallow p-well, p+ and aluminium

Back Bias - Depletion and Field

Top bias:

- No electric field at the back
- Depletion depth ${\sim}70\mu m$

Back bias:

- Uniform electric field
- Fully depleted

Lingxin Meng (lingxin.meng@liv.ac.uk) - TCAD Simulations of CMOS Sensors

UNIVERSITY OF LIVERPOOL

Transient Simulation - MIP positions

.IVERPOOL

UNIVERSITÉ

DE GENÈVE

UNIVERSITÉ

DE GENÈVE

P-wells:

VERPOOL

improved depletion depth for HR materials wider electric field higher leakage current

- Back bias: uniform electric field larger depletion
 → efficient charge collection
- Radiation effects on depletion depth of low resistivity (maybe) inconsistent with measurements
 - \rightarrow Check on N_{eff} vs. fluence
- Transient simulation: charge sharing and crosstalk on multipixel
- Capacity simulation
- Improve current model, e.g. by measuring the doping profile