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@ achieving high luminosities,
@ varying the atomic mass of the target almost at will,
@ polarising the target.

3 physics cases

@ Advance our understanding of the large-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

@ Transverse dynamics and spin of gluons inside (un)polarised nucleons
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HEAV Y-QUARK CONTENT IN THE NUCLEON & NUCLEUS

- Very large PDF uncertainties for x 2 0.5.
[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

- Search and study rare proton fluctuations
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- DYNAMICS AND SPIN OF GLUONS INSIDE (UN)POLARISED NUCLEONS
- Possible missing contribution to the proton spin: orbital angular momentum
- Test of the QCD factorisation framework [beyond the DY Ay sign change]
- Determination of the linearly polarised gluons in unpolarised protons

- HEAVY-ION COLLISIONS TOWARDS LARGE RAPIDITIES
- Explore the longitudinal expansion of QGP formation with new hard probes
- Test the factorisation of cold nuclear effects from p + A to A + B collisions
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
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A fixed-target experiment using the LHC
beam(s): AFTER@LHC
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Generalities
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A bit of kinematics with the 7 TeV proton beam

Generalities

pp or pA collisions with a 7 TeV p* on a fixed target occur at a CM energy

Vs = /2mNE, = 115 GeV

@ In a symmetric collider mode, \/s = 2Ep, i.e. much larger
Lab _ 5 .,
W = 2 = 60

o Benefit of the fixed target mode : boost: y,

@ Rather soft particles in the CM are in pr1nc1ple detectable

o Angle in the Lab. frame: tan 6 = £~ =0 =~1°
Pz Lab Yﬁ
[Rapidity shift: Ay = tanh™!f ~ 4.8]

The entire forward CM hemisphere (ycp > 0) within 0° < 0,4, <1°
Good thing: small forward detector = large acceptance

Bad thing: high multiplicity = absorber = physics limitation

Let us simply avoid the forward region ! How ?
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In addition, there are advantages to go there:
- reduced multiplicities at large(r) angles
- access to partons with momentum fraction x — 1 in the target

Hadron center-of-mass system Target rest frame
o = S
X1 [ X X1

X2

backward physics = large-x;, physics ‘
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access to the target-rapidity region (xp - —1)

J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC April 13, 2016 8/36



The target-rapidity region: the uncharted territory

Complementarity with former fixed-target experiments:
access to the target-rapidity region (xp - 1)

J /v suppression in pA colllslons

s 11

1.05

0.9!

o

0.

©

0.8!

a

S[TTTT T[T T[T [ TTIT[TTTT

0.8

0.75

|
I

1]

4 HERAB 920 GeV
O E866 800 GeV

O NA50 450 GeV

* NAG60 400 GeV

% NA3 200 GeV

= NA60 158 GeV

@ x5 systematically studied at fixed target experiments up to +1

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

April 13, 2016

8/36



The target-rapidity region: the uncharted territory

Complementarity with former fixed-target experiments:
access to the target-rapidity region (xp - 1)

J /v suppression in pA colllslons

s 11

1.05

0.9!

o

0.

©

0.8!

a

S[TTTT T[T T[T [ TTIT[TTTT

0.8

0.75

|
I

1]

4 HERAB 920 GeV
O E866 800 GeV

O NA50 450 GeV

* NAG60 400 GeV

% NA3 200 GeV

= NA60 158 GeV

@ x5 systematically studied at fixed target experiments up to +1
@ Hera-B (E, = 920 GeV) was the only one to really explore xr < 0, up to -0.3

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

April 13, 2016

8/36



The target-rapidity region: the uncharted territory

Complementarity with former fixed-target experiments:
access to the target-rapidity region (xp - 1)

J /v suppression in pA collisions

8 1'1: A HERAB 920 GeV
C \ O E866 800 GeV
1.05— [ o NA50450 GeV
= [ 1 1 o NAGO 400 GeV
1= [ I 11 % NA3200 GeV
E T]I}IE] 11 = NA60 158 GeV
0.95 (}T“}‘T i b, %
ool titiy e,
035; l} % %@
08F ¢ 8
Ew | | L L L \@ @
0732 02 0 0.2 0.4 0.6 0.8
Lo b by b b bvpn b bvv o Py g Py 1|
-1 -8 . 4 2 0 +2 4 +6 +8 +1
Phenix@RHIC XF

xr systematically studied at fixed target experiments up to +1

Hera-B (E, = 920 GeV) was the only one to really explore xr < 0, up to -0.3
PHENIX @ RHIC: -0.1< xp < 0.1 [ could be wider with Y, but low stat.]
CMS/ATLAS: |xg| < 5-107%; LHCb-collider: 5-107° < xp < 4 - 107>

J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC April 13, 2016 8/36



The target-rapidity region: the uncharted territory

Complementarity with former fixed-target experiments:
access to the target-rapidity region (xp - 1)

J /v suppression in pA collisions

8 1'1: A HERAB 920 GeV
C \ O E866 800 GeV
1.05— [ o NA50450 GeV
= [ 1 1 o NAGO 400 GeV
fi= I I% % NA3 200 GeV
E ﬁ[ 1 = NAG0 158 GeV
0.95 (}T“}‘T i b, %
ool titiy e,
. 055; l} % %@
08F ¢ 8
Ew | | L L L \@ @
0732 02 0 0.2 0.4 0.6 0.8
Lo b by b b bvpn b bvv o Py g Py 1|
-1 -8 . 4 2 0 +2 4 +6 +8 +1
Phenix@RHIC XF

xr systematically studied at fixed target experiments up to +1

Hera-B (E, = 920 GeV) was the only one to really explore xr < 0, up to -0.3
PHENIX @ RHIC: -0.1< xg < 0.1 [ could be wider with Y, but low stat.]
CMS/ATLAS: |xg| < 5-107%; LHCb-collider: 5-107° < xp < 4 - 107>

J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC April 13, 2016 8/36



The target-rapidity region: the uncharted territory

Complementarity with former fixed-target experiments:
access to the target-rapidity region (xp - 1)

J /v suppression in pA collisions
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Colliding the LHC beams on fixed targets:
2 options
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Colliding the LHC beams on fixed targets

The extracted-beam option

% The LHC beam may be extracted using “Strong crystalline field”
without any decrease in performance of the LHC!
E. Uggerhoj, U.I Uggerhoj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131
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LUAO9 proposal approved by the LHCC
* 2 crystals and 2 goniometers already installed in the LHC beampipe
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Colliding the LHC beams on fixed targets

The extracted-beam option

% The LHC beam may be extracted using “Strong crystalline field”
without any decrease in performance of the LHC!
E. Uggerhoj, U.I Uggerhoj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

% Illustration for collimation
ﬁ ‘
Bent-cryst\
A solid state primary as primary
collimator-scatterer collimator

% Tests will be performed on the LHC beam:
LUAO9 proposal approved by the LHCC
* 2 crystals and 2 goniometers already installed in the LHC beampipe
succesful test at 8 TeV [CERN-sPSC-2015-039 (see section 4)].
% CRYSBEAM: ERC funded project to extract the LHC beams
with a bent.crystal (G.-Cavoto - Rome)
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Colliding the LHC beams on fixed targets

Luminosities with extracted-proton beams

e Expected proton flux @y, =5 x 10° p*s7!
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Colliding the LHC beams on fixed targets

Luminosities with extracted-proton beams

e Expected proton flux ®p,,, =5 x 10® p*s~!
@ Instantaneous Luminosity:

L= Dpogm x Ntarget = Npeam % (P x £ x NA)/A
[ ¢: target thickness (for instance Icm)]

o Integrated luminosity: [ dtL over 107 s for p* and 10° for Pb
[the so-called LHC years]

Target  p (g.cm?) L (brs)  [L(Ebryr)
1m Liq. H, 0.07 1 2000 20
1m Liq. D, 0.16 2 2400 24
1cm Be 1.85 9 62 .62
1cm Cu 8.96 64 42 42
1icm W 19.1 185 31 31
1cm Pb 11.35 207 16 .16
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Colliding the LHC beams on fixed targets

Luminosities with extracted-proton beams

e Expected proton flux ®p,,, =5 x 10® p*s~!
@ Instantaneous Luminosity:

L= Dpogm x Ntarget = Npeam % (P x £ x NA)/A

[ ¢: target thickness (for instance Icm)]

o Integrated luminosity: [ dtL over 107 s for p* and 10° for Pb
[the so-called LHC years]

Target  p (g.cm?) L (brs)  [L(Ebryr)
1m Liq. H, 0.07 1 2000 20
1m Liq. D, 0.16 2 2400 24
1cm Be 1.85 9 62 .62
1cm Cu 8.96 64 42 42
1icm W 19.1 185 31 31
1cm Pb 11.35 207 16 .16

e For pp and pd collisions : L, /p, = 20 b1y~
3 orders of magnitude larger than RHIC (200 GeV)
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SMOG@®@LHCD: the first step towards an internal (polarised) target ?

JINST 3 (2008) S08005 SMOG: System for Measuring Overlap with Gas

Pseudorapidity acceptance
RICHI & RICH2 2<n<5

Calorimeters
ECAL: 05/E ~ 1% + 10%/,/E[GeV]
My M5
™

seors] A 20

Flow to VELO

“fill” valve
PV501

High pressure
volume

b |

Tom

!
VELO
Gp ~ 20 pm

Tracking System
o Ap/p = 0.4%@5 GeV/c
for high-pr tracks t 0.6%@100 GeV/c |r

bwd ace. —~4 <n < -1.8 =» injection of Ne-gas into VELO
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Colliding the LHC beams on fixed targets

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

SMOG: System for Measuring Overlap with Gas

Flow to VELO

JINST 3 (2008) S08005

Pseudorapidity acceptance
RICHI & RICH2 2<n<5

Calorimeters
ECAL: 05/E ~ 1% + 10%/,/E[GeV]
My M5
e

“fill” valve
PV501

High pressure
volume

Tom

/
VELO Tracking System Muon System
o~ 200M a0 4%@5 GeV/e | eu 9
for high-py tracks t 0.6%@100 GeV/c |m—
bwd ace. —4 < —1.5 .y . .
e 1 ’ =¥ injection of Ne-gas into VELO

@ Initially: low density Ne-gas injected into LHCb Vertex Locator [LHcb-CONF-2012-034]
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Colliding the LHC beams on fixed targets

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

JINST 3 (2008) S08005 SMOG: System for Measuring Overlap with Gas

Pseudorapidity acceptance
2<n<5

Calorimeters
ECAL: 05/E ~ 1% + 10%/,/E[GeV]
My M5
e

A

Flow to VELO

“fill” valve
PV501

High pressure
volume

/
VE l k(r ) Tracking System
f ~(’|"-),; ,“.f".,\ Ap/p = 0.4%@5 GeV/c
g P to 0.6%@100 GeV/c | — pum
bwd ace. —4 < n < —1.5 1

=¥ injection of Ne-gas into VELO

@ Initially: low density Ne-gas injected into LHCb Vertex Locator [LHcb-CONF-2012-034]
@ Short pilot runs: 2012 pNe at /syy = 87 GeV & 2013 PbNe at \/syn = 54 GeV
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Colliding the LHC beams on fix

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

JINST 3 (2008) S08005 SMOG: System for Measuring Overlap with Gas
Pseudorapidity acceptance Flow to VELO
RICHI & RICH2 2<n<5

€(K = K) ~ 95¢ Calorimeters
m — K mis-id: ] ECAL: 0 /E ~ 1% + 10%/./E[GeV]
¥ Me M5
"~

M

“fill” valve
PV501

Magnee

beam 1 "3 ¢

High pressure
volume

!
VELO Tracking System
o~ 20UM pp - 0,4%@S GeV/e Ny
e for "";""’T '“’"“1 to 0.6%@100 GeV/c |m — j mis-id:
acc. —4 < < —1.8 R )
e aee 1L =» injection of Ne-gas into VELO

@ Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
@ Short pilot runs: 2012 pNe at /syy = 87 GeV & 2013 PbNe at \/syy = 54 GeV

@ 12 hours of pNe and 8 hours pHe (09/2015); 3 days of pAr in (10/2015)

@ 1 week of PbAr (12/2015)
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Colliding the LHC beams

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

JINST 3 (2008) S08005 SMOG: System for Measuring Overlap with Gas
Pseudorapidity acceptance Flow to VELO
RICHI & RICH2 2<n<5

€(K — K) ~ 95 Calorimeters
7 — K mis-id: ] ECAL: 0/ ~ 1% + 10%//E[GeV]
y Me M5
o

M

“fill” valve
PV501

beam 1 >H%

High pressure
volume

[

Ty

/
VELO Tracking System Muon
ol = Z0MM Ap/p = 0.4%@5 GeV/e | el
B o ":""T rac 4 to 0.6%@100 GeV/c |m — y mis-id:
acc. —4 < —1.5 L .
e = ’ =¥ injection of Ne-gas into VELO

Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
Short pilot runs: 2012 pNe at \/syy = 87 GeV & 2013 PbNe at |/syy = 54 GeV

12 hours of pNe and 8 hours pHe (09/2015); 3 days of pAr in (10/2015)

1 week of PbAr (12/2015)

Noble gases favoured
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Colliding the LHC beams on fixed targets

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

RICH1 & RIC

beam 1 "3 ¢

JINST 3 (2008) S08005

Pseudorapidity acceptance
2<n<5

Calorimeters

ECAL: 05/E ~ 1% + 10%/,/E[GeV]
My M3

!
VELO
Gp ~ 20 pm
for high-pr tracks
bwd ace. —4 < n < —1.5

Tracking System
Ap/p = 0.4%@S5 GeV/c

1 week of PbAr (12/2015)

°
°
°
°
@ Noble gases favoured
°

J.P. Lansberg (IPNO, P

to 0.6%@100 GeV/c |m — y mis-id:

Muon Systen
€(u—p)~9

AFTER@LHC

SMOG: System for Measuring Overlap with Gas

Flow to VELO

restriction

“fill” valve
PV501

High pressure
volume

=¥ injection of Ne-gas into VELO

Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
Short pilot runs: 2012 pNe at |/syy = 87 GeV & 2013 PbNe at | /syy = 54 GeV
12 hours of pNe and 8 hours pHe (09/2015); 3 days of pAr in (10/2015)

Target unpolarised with the current SMOG system
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Colliding the LHC beams on fixed targets

SMOG@®@LHCD: the first step towards an internal (polarised) target ?

RICH1 & RIC

beam 1 "3 ¢

JINST 3 (2008) S08005

Pseudorapidity acceptance
2<n<5

Calorimeters

ECAL: 05/E ~ 1% + 10%/,/E[GeV]
My M3

!
VELO
Gp ~ 20 pm
for high-pr tracks
bwd ace. —4 < n < —1.5

Tracking System
Ap/p = 0.4%@S5 GeV/c

1 week of PbAr (12/2015)
Noble gases favoured
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to 0.6%@100 GeV/c |m — y mis-id:

Muon Systen
€(u—p)~9

AFTER@LHC

SMOG: System for Measuring Overlap with Gas

Flow to VELO

restriction

“fill” valve
PV501

High pressure
volume

=¥ injection of Ne-gas into VELO

Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
Short pilot runs: 2012 pNe at |/syy = 87 GeV & 2013 PbNe at | /syy = 54 GeV
12 hours of pNe and 8 hours pHe (09/2015); 3 days of pAr in (10/2015)

Target unpolarised with the current SMOG system
SMOG test : no decrease of LHC performances observed
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

@ Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

@ Instantaneous Luminosity: £ = ®peam X Niarger = Npeam % (p x €% Na)/A
o @, =3.2x10"p* x 11000Hz = 3.5 x 10"¥p* 57! (172 Ampere !
o ®pp =4.2x10"p* x 11000Hz = 4.6 x 10"Pb s~
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

@ Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
o @, =3.2x10"p* x11000Hz = 3.5 x 10*¥p* 57!

o Dpy =4.2x10"p* x 11000Hz = 4.6 x 10"Pb s~
@ Usable gas zone ¢, up to 100 cm

[1/2 Ampere !]
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

@ Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
@,+ =3.2x10"p* x 11000Hz = 3.5 x 10*¥p* 57! (172 Ampére 1]
®pp, = 4.2 x 10" x 11000Hz = 4.6 x 10"Pb s~

Usable gas zone ¢, up to 100 cm

_A

°
°
°
° 22400

bargem™ = £ = Opuum x (3245 x P x £)

Target density : & = c =

[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
@,+ =3.2x10"p* x 11000Hz = 3.5 x 10*¥p* 57! (172 Ampére 1]
®pp, = 4.2 x 10" x 11000Hz = 4.6 x 10"Pb s~

Usable gas zone ¢, up to 100 cm

_A

2 _ %
Sagobar gem™ = L = Qpeam x (55555 x P x €)

Target density : & = c =

[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]

For P = 10_9 bar [7x that of SMOG in 2015, the vacuum’ is 1012 bar], ‘CPX(PbX) = 10(10_3)‘”b_1 S_1
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
@,+ =3.2x10"p* x 11000Hz = 3.5 x 10*¥p* 57! (172 Ampére 1]
®pp, = 4.2 x 10" x 11000Hz = 4.6 x 10"Pb s~

Usable gas zone ¢, up to 100 cm

_4
22400

ity: 2=¢c= -1 -3 = N
Target density : 5 = c = bar"gem™ = L= Opegm x (33,55 X P x £)
[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]
@ ForP= 10_9 bar [7x that of SMOG in 2015, the vacuum’ is 1072 bar], ‘CPX(PbX) = 10(10_3)‘”b_1 S_1

@ Similar luminosities for pA than with the extracted beam options (up to 60 ub™' s™)
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
@,+ =3.2x10"p* x 11000Hz = 3.5 x 10*¥p* 57! (172 Ampére 1]
®pp, = 4.2 x 10" x 11000Hz = 4.6 x 10"Pb s~

Usable gas zone ¢, up to 100 cm

_A

2 _ %
Sagobar gem™ = L = Qpeam x (55555 x P x €)

Target density : & = c =

[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]

@ ForP= 10_9 bar [7x that of SMOG in 2015, the vacuum’ is 1072 bar], ‘CPX(PbX) = 10(10_3)‘”b_1 S_1

@ Similar luminosities for pA than with the extracted beam options (up to 60 ub™' s™)
@ To get 10 fb™'y™" for pp, P should reach 107 bar

This can be achieved with a target storage cell which can be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens’s talk at PSTP 2015
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A
@,+ =3.2x10"p* x 11000Hz = 3.5 x 10*¥p* 57! (172 Ampére 1]
®pp, = 4.2 x 10" x 11000Hz = 4.6 x 10"Pb s~

Usable gas zone ¢, up to 100 cm

_4
22400

Target density : & = c = bar 'gem™ = L = Opogm x (zﬁ—go x P x¢)

[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]
@ ForP= 10_9 bar [7x that of SMOG in 2015, the vacuum’ is 1072 bar], ‘CPX(PbX) = 10(10_3)‘”b_1 S_1
@ Similar luminosities for pA than with the extracted beam options (up to 60 ub™' s™)
@ To get 10 fb™'y™" for pp, P should reach 107 bar
This can be achieved with a target storage cell which can be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens’s talk at PSTP 2015

@ Simply scaled up, this would give, for Pbp or PbA, 100 nb™'y~".
= For PbA, limitations would come first from the beam lifetime, pile-up and exp. DAQ
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Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

@ Instantaneous Luminosity: £ = ®peam X Niarget = Npeam % (p x €x Ny)[A

o @, =3.2x10"p* x11000Hz = 3.5 x 10*¥p* 57! (12 Ampére 1]
o Dpy =4.2x10"p* x 11000Hz = 4.6 x 10"Pb s~

@ Usable gas zone ¢, up to 100 cm

@ Target density : % =c= zﬁﬁbar_lgcm% = L= Dpegm X (zﬁ—go x P x£)

[1 mole of a perfect gas occupies 22 400 cm® at 273 K and 1 bar]
@ ForP= 10_9 bar [7x that of SMOG in 2015, the vacuum’ is 1072 bar], ‘CPX(PbX) = 10(10_3)‘”b_1 S_1
@ Similar luminosities for pA than with the extracted beam options (up to 60 ub™' s™)
@ To get 10 fb™'y™" for pp, P should reach 107 bar

This can be achieved with a target storage cell which can be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens’s talk at PSTP 2015

@ Simply scaled up, this would give, for Pbp or PbA, 100 nb™'y~".
= For PbA, limitations would come first from the beam lifetime, pile-up and exp. DAQ

A specific gas target is a competitive alternative to the beam extraction
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Advances in High Energy Physics
Volume 2015, Article ID 463141, 6 pages
http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin

Asymmetries and Heavy Ion Collisions
Colin Barschel,! Paolo Lenisa,” Alexander Nass,’ and Erhard Steffens*

'LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland

“University of Ferrara and INFN, 44100 Ferrara, Italy

*Institut fiir Kernphysik, FZJ, 52425 Jiilich, Germany

*Physics Institute, Friedrich-Alexander University Erl Niirnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The
target provides a high areal density at minimum gas input, which may be polarized 'H, ’H, or *He gas or heavy inert gases in a
wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10%/cm? s can be produced with

existing techniques.
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Advances in High Energy Physics
Volume 2015, Article ID 463141, 6 pages
http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin

Asymmetries and Heavy Ion Collisions
Colin Barschel,! Paolo Lenisa,” Alexander Nass,’ and Erhard Steffens*

!LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland dtl = 1033 —2 -1 At=107s 10 fb_1'
*University of Ferrara and INFN, 44100 Ferrara, Ttaly = cam s = .
*Institut fiir Kernphysik, FZJ, 52425 Jiilich, Germany

*Physics Institute, Friedrich-Alexander University Erl Niirnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The
target provides a high areal density at minimum gas input, which may be polarized 'H, ’H, or *He gas or heavy inert gases in a
wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10%/cm? s can be produced with
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Luminosities with a polarised internal-gas-target option

Advances in High Energy Physics
Volume 2015, Article ID 463141, 6 pages
http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin

Asymmetries and Heavy Ion Collisions
Colin Barschel,! Paolo Lenisa,” Alexander Nass,’ and Erhard Steffens*

7
'LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland 33 -2 -1 At=10"s -1
*University of Ferrara and INFN, 44100 Ferrara, Ttaly dtL =10"cm “s = "10fb™!
*Institut fiir Kernphysik, FZJ, 52425 Jiilich, Germany

Physics Institute, Friedrich-Alexander University Erl Niirnk

, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The
target provides a high areal density at minimum gas input, which may be polarized 'H, ’H, or *He gas or heavy inert gases in a
wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10%/cm? s can be produced with

existing techniques.
Figures-of-merit Comparison : FoM = P? x {f%, a®} x 0 (. stefens at psTP 2015]
FoM* = ¢ x FoM = P* x {f*,a’} x ¢ x 0 = P* x f2 x L
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Colliding the LHC beams on fixed targets

Luminosities with a polarised internal-gas-target option

Advances in High Energy Physics
Volume 2015, Article ID 463141, 6 pages
http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin

Asymmetries and Heavy Ion Collisions
Colin Barschel,! Paolo Lenisa,” Alexander Nass,’ and Erhard Steffens*

!LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland dtl = 1033 —2 -1 At=107s 10 fb_1'
*University of Ferrara and INFN, 44100 Ferrara, Ttaly = cam s = .
*Institut fiir Kernphysik, FZJ, 52425 Jiilich, Germany

*Physics Institute, Friedrich-Alexander University Erlangen-Niirnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The
target provides a high areal density at minimum gas input, which may be polarized 'H, *H, or *He gas or heavy inert gases in a
wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10%/cm? s can be produced with
existing techniques.

Figures-of-merit Comparison : FoM = P? x {f%, a®} x 0 (. stefens at psTP 2015]
FoM* = ¢ x FoM = P* x {f*,a’} x ¢ x 0 = P* x f2 x L
Target and mode ‘ Target characteristics ‘ FoM*
NH; UVa-target & extr. beam P=085f=0170=15x10"cm > | 1.6x10°" cm s "

NH; COMPASS & extr. beam P=09f=0.176;0=28x10" cm > | 3.5x10” cm *s”'
"HERMES H target1 & LHCbeam | P =0.85 a =0.95 0 = 2.5 x 10" cm 2 6x102 cm 25!

'T = 300K
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Part IV

AFTER@LHC: the case of spin physics
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The quest for the orbital angular momentum of the quarks and gluons

@ Quark/Gluon Sivers function: distortion in the distribution of an unpolarised
partons with momentum fraction x and transverse momentum k, due to the
proton transverse polarisation : 4 (x, k2 )
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The quest for the orbital angular momentum of the quarks and gluons

@ Quark/Gluon Sivers function: distortion in the distribution of an unpolarised
partons with momentum fraction x and transverse momentum k, due to the
proton transverse polarisation : 4 (x, k2 )

@ First suggested by D. Sivers to explain the large observed left-right single transverse
spin asymmetries Ay in p'p - 7X
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@ Quark/Gluon Sivers function: distortion in the distribution of an unpolarised
partons with momentum fraction x and transverse momentum k, due to the
proton transverse polarisation : 4 (x, k2 )

@ First suggested by D. Sivers to explain the large observed left-right single transverse
spin asymmetries Ay in p'p - 7X

@ non-zero quark/gluon Sivers function = non-zero quark/gluon OAM

; celag, 12 _ _flac, 72
@ Process dependence predicted: f," (x, k1) preti—van = —fi7 (%, k7 ) semiztnclusive IS
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The quest for the orbital angular momentum of the quarks and gluons

Quark/Gluon Sivers function: distortion in the distribution of an unpolarised
partons with momentum fraction x and transverse momentum k, due to the
proton transverse polarisation : 4 (x, k2 )

First suggested by D. Sivers to explain the large observed left-right single transverse
spin asymmetries Ay in p'p - 7X

non-zero quark/gluon Sivers function = non-zero quark/gluon OAM

: Cflag, g2 _ _flas. 12
Process dependence predicted: f;" (x, k1) preli—van = —fi7 (% k7)) semi-tnclusive DIS

. . — L 7.
Several experiments wish to measure AR"=Y4" o extract firl(x, k)

o COMPASS: valence quarks using a pion beam (160 GeV)

on a polarised proton target
o El1027: valence quarks using a polarised proton beam (120 GeV)

on an unpolarised proton target
o E1039: sea quarks using an unpolarised proton beam (120 GeV)

on a polarised proton target
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SSA in Drell-Yan studies with AFTER@LHC

= Some parameters of existing and proposed polarised DY experiments.
S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 239
V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65 (2010) 267.
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SSA in Drell-Yan studies with AFTER@LHC

Expected asymmetries

The target-rapidity region (negative xz) corresponds to high x'

where the kr-spin correlation is the largest
How large ?

Azimuthal asymmetries in lepton-pair production at a fixed-target
experiment using the LHC beams (AFTER)

Tianbo Liu', Bo-Qiang Ma'-2#

'School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Center for High Energy Physics, Peking University, Beijing 100871, China

Transverse Single-Spin Asymmetries in
Proton-Proton Collisions at the AFTER@LHC Experiment
in a TMD Factorisation Scheme

M. Anselmino,"? U. D’Alesio,> and S. Melis'

! Dipartimento di Fisica, Universita di Torino, Via P. Giuria 1, 10125 Torino, Italy

°INEN, Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy

*Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
*INEN, Sezione di Cagliari, CP 170, 09042 Monserrato, Italy
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Expected asymmetries

The target-rapidity region (negative xz) corresponds to high x'
where the kr-spin correlation is the largest
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@ With 10 fb™", one can indeed expect up to 10° DY events in 4 < M < 9 GeV
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@ With 10 fb™", one can indeed expect up to 10° DY events in 4 < M < 9 GeV
@ W and Z should be reachable with 10 tb™": x' ~ 0.7 + 0.8
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Drell-Yan

Fast simulation using LHCb reconstruction parameters

Projection for a LHCb-like detector L. Massacrier, B. Trzeciak, et al., Adv.Hi.En.Phys. (2015) 986348

@ Simulations with Pythia 8.185

@ the LHCD detector is NOT simulated but LHCb reconstruction parameters are
introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)

Requirements:
o Momentum resolution : Ap/p = 0.5%

e Muon identification efficiency: 98%

Cuts at the single muon level
0 2<n,<5
o pry > 0.7 GeV

@ Muon misidentification:

o If m and K decay before the calorimeters (12m), they are rejected by the
tracking

o otherwise a misidentification probability is applied following: F. Achilli et al,
arXiv:1306.0249
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Drell-Yan background & signal reach

@ At backward rapidities, quark-induced processes are favoured = Bkgd get smaller
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@ Charm and beauty background can be cut (2nd vertex) but interesting on their own
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@ Charm and beauty background can be cut (2nd vertex) but interesting on their own

@ Uncorrelated background can be subtracted by the mixing-event method
[up to which S/B depends on the systematics of the subtraction]
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@ Charm and beauty background can be cut (2nd vertex) but interesting on their own

@ Uncorrelated background can be subtracted by the mixing-event method
[up to which S/B depends on the systematics of the subtraction]

@ Still 4000+ DY events leftin2 < Y <3for 8 < M <9 GeV, i.e. atx ~ 0.7
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Drell-Yan background & signal reach

@ At backward rapidities, quark-induced processes are favoured = Bkgd get smaller
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@ Charm and beauty background can be cut (2nd vertex) but interesting on their own

@ Uncorrelated background can be subtracted by the mixing-event method
[up to which S/B depends on the systematics of the subtraction]

@ Still 4000+ DY events leftin2 < Y <3for 8 < M <9 GeV, i.e. atx ~ 0.7

@ Yields to precise measurements of AR at large x as seen above
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Gluon contribution to the proton spin

The gluon OAM contribution to the proton spin

@ Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano,]. Zhou. Adv.Hi.En.Phys. (2015) ID:371396
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e Hint of nonzero gluon Sivers effect in ep! — hh: talk by A. Szabelski, yesterday
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Gluon contribution to the proton spin

J / Y Ay projection (vs. current PHENIX data)

0-15:""I""I'"'I'"'I""I""I""I"":
0_15— —— {s=200 GeV [PHENIX: Phys. Rev. D 82, 112008 (2010)] —f
0.055_ —=— Stat. unc. projection _E

T for AFTER@LHC ]
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Preliminary; Courtesy of D. Kikola

Nota: P was choosen to be smaller than above, otherwise the statistical uncertainties are invisible
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Part V

From the gluon PDF g(x) to the gluon
TMD hy(x, kr)
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Gluon and I y- ibutions

Gluons in the proton

@ Gluon distribution at mid, high and ultra-high x in the proton
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o translates into very large uncertainties
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@ Gluon distribution at mid, high and ultra-high x in the proton

o Not easily accessible in DIS
o translates into very large uncertainties

Accessible thanks gluon sensitive probes,

@ quarkonia
see a study by D. Diakonov et al., JHEP 1302 (2013) 069
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Gluon and I y ark ibutions

Gluons in the proton

@ Gluon distribution at mid, high and ultra-high x in the proton
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@ Isolated photon

see the survey by D. d’Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

@ jets ( Py € [20,40] GeV) x
‘ Multiple probes needed to check factorisation
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Gluon and heavy-quark ibutions

Gluons in the proton

@ Gluon distribution at mid, high and ultra-high x in the proton
o Not easily accessible in DIS LHC 8 TeV - Ratio to NNPDF2.3 NNLO - o, = 0.118

o translates into very large uncertainties

Accessible thanks gluon sensitive probes,

@ quarkonia
see a study by D. Diakonov et al., JHEP 1302 (2013) 069

luon - Gluon Luminosity

@ Isolated photon

see the survey by D. d’Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

@ jets (Pr € [20,40] GeV)

Large-x gluons: important to characterise
some possible BSM findings at the LHC
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@ Low Pr C-even quarkonium production is a good probe of the
distribution of linearly polarised gluons in unpolarised protons: h;*

o Affect the low Py spectra:
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Distribution of linearly polarised gluons in unpolarised protons: h;*
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at LHCb and AFTER

Theory Group, KVI, University of Groningen, Zemikelaan 25, NL-9747 AA Groningen, The Netherlands

@ Low Pr C-even quarkonium production is a good probe of the
distribution of linearly polarised gluons in unpolarised protons: h;*

o Affect the low Py spectra:
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@ The boost is of great help

to access low Py P-wave quarkonia
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@ Low Pr C-even quarkonium production is a good probe of the
distribution of linearly polarised gluons in unpolarised protons: h;*

o Affect the low Py spectra:
d d
Lok e - R(qh) & LU0 e 1+ R(q})

(Rinvolves f£ (x, kr, u) and hllg(x, kr, u))

@ The boost is of great help
to access low Py P-wave quarkonia

1g . .
° I ¢ is connected to the Higgs transverse-momentum
distribution p. Boer, et al. PRL 108 (2012) 032002
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@ Smaller yield (14 TeV — 115 GeV) compensated by an access to lower Pr
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(via double heavy-flavour production (D + D, v + D, v + v))

W and Z production near threshold

Ultra-peripheral collisions and y induced reactions

Y sequential melting between SPS and RHIC energies
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Check of nPDF factorisation with DY in A + B collisions

@ Fracture function studies with DY + hadron, etc.

J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC April 13, 2016 28/36



More with AFTER@LHC

Further readings

Heavy-Ion Physics
°

Gluon shadowing effects on J [y and Y production in p+Pb collisions at \/syN = 115 GeV and Pb+p
collisions at \/sNN = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.

Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target
experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134

Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by E.
Arleo, S.Peigné. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951

Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by
K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689

Lepton-pair production in ultraperipheral collisions at AFTER@LHC
By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087

Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By ].P. Lansberg, S.J.
Brodsky, E Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.
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More with AFTER@LHC

Further readings

Spin physics

@ Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K.
Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015)
257934.

@ Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a
TMD factorisation scheme by M. Anselmino, U. D’Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]].
Adv.Hi.En.Phys. (2015) 475040.

@ The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou.
[arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396

@ Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams
(AFTER) By T. Liu, B.Q. Ma. Eur.Phys.]J. C72 (2012) 2037.

@ Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C.
Pisano. Phys.Rev. D86 (2012) 094007.
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More with AFTER@LHC

Further readings

Hadron structure

Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).
by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294

Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in
Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)
by Y. Feng, and ].X. Wang. Adv.Hi.En.Phys. (2015) 726393.

#e production in photon-induced interactions at a fixed target experiment at LHC as a probe of the
odderon
By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.

A review of the intrinsic heavy quark content of the nucleon
by S. J. Brodsky, A. Kusina, F Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys.
(2015) 231547,

Hadpronic production of E.c at a fixed-target experiment at the LHC
By G. Chen et al.. Phys.Rev. D89 (2014) 074020.
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More with AFTER@LHC

Further readings

Feasibility study and technical ideas

@ Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and
lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, E. Fleuret, C. Hadjidakis, D. Kikola,
J.PLansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348

@ A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions
by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141

@ Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S.
Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

@ Physics Opportunities of a Fixed-Target Experiment using the LHC Beams
By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522
(2013) 239.
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First simulation: is the boost an issue ?

B. Trzeciak, L. Massacrier ef al., Adv.Hi.En.Phys. (2015) 986348

@ LHCDb has successfully carried out pPb and Pbp analyses at 5 TeV

@ We have compared the multiplicity as function of # in the collider mode (/s = 5 TeV) v:

that in fixed target mode (/s = 115 TeV) using EPOS

lab
T

= [ Epos ]
g 3000  Fixed-target mode ]
% [ —Pbbeam, Pb target, |5,=72 GeV, 0-10% e
S 25001 Pb beam, Xe target, |5,,,=72 GeV, 0-10% B
g r Pb beam, Ar target, |5,,,=72 GeV, 0-10% 1
= [ collider mode ]
S 2000 — PP beam, Pb beam, 5,,=5500 GeV, 0-10% |
L —Pbbeam, Pb beam, |s,=5500 GeV, 40-50% 4

1500~ B
1000 B
500 J

1 2 3 4 5 6 7 8 9 10
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@ LHCDb has successfully carried out pPb and Pbp analyses at 5 TeV

@ We have compared the multiplicity as function of # in the collider mode (/s = 5 TeV) vs.
that in fixed target mode (/s = 115 TeV) using EPOS

g T
= [ Epos ]
g 3000  Fixed-target mode ]
% [ —Pbbeam, Pb target, |5,=72 GeV, 0-10% e
T 55001 Pb beam, Xe target, |5,,,=72 GeV, 0-10% B
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@ Despite the boost, the multiplicity in the LHCb acceptance [ forward #] is lower in the fixed

mode than in the collider mode (at higher \/s)

@ Simulation backed-up with a comparison of the number-of-track distribution between
simulations at the detector level and data Z. Yang, private comm,
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Charmonium background & its rapidity dependence

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348
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first simulations

Bottomonium background & signal reach

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348
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Bottomonium background & signal reach

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348
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If g, (x) — gy (x) is too small, this measurement would anyhow be
sensitive to the EMC and Fermi-motion effects in the deuteron
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Gluons in nuclei

pA studies: large-x gluon content of the nucleus

@ Large-x gluon nPDF: unknown
@ Gluon EMC effect: unknown
o Hint from Y data at RHIC

@ Strongly limited in terms of statistics
after 10 years of RHIC :
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Gluons in nuclei

pA studies: large-x gluon content of the nucleus
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@ Large-x gluon nPDF: unknown

Gluon EMC effect: unknown

Hint from Y data at RHIC

Strongly limited in terms of statistics

after 10 years of RHIC :

Quest for the gluon antishadowing with J/y
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Gas target

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141

TaBLE 1: Comparison of gas targets in storage rings with a hypothetical target for the proposed AFTER@LHC initiative [1, 2].The target gas

'H, %D, or *He is assumed to be spin polarized.

E e

L

T

L

Storage ring Particle [Gev] Target type [m] K] (em? s] Remarks Reference
HERA-¢ ‘ .
< + Cell 100 2.5-10 HERMES exp.
DESY e* pol. 276 17 21y 3 0.4 - 102 [9]
(term. 2007) H, °D, "He 25 2.5-10 1995-2007
RHIC-p . Absolute p
BNL p pol. 250 Jet — — 1.7-10 polarimeter [10]
COSY 3.77 Cell'H,*D 10% ANKE exp. [4,5]
FZ Jiilich P, dpol. T = 49.3 MeV Cell 'H 04 300 5750102 PAX exp. [
Cell
IE,I;}EN p unpol. 7,000 'H,°D L0 100 1_0” Based on techn. of this paper
heavy ions 2,760 - A Xe : >100  107-10®  HERMES target pap

(proposed)

M =131

33 6

— beam lifetime with £y, = 10" cm™ 2571210 nb!sTof 2 x 10° s (or 23 days).
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@ Uncertainties in atmospheric neutrino flux
(background of cosmic neutrinos) dominated by those
on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

J.P. Lansberg (IPNO, P AFTER@LHC

April 13, 2016

46 /36



@ Uncertainties in atmospheric neutrino flux
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on charmed meson decays
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Heavy-quark content of the proton and UHECR neutrinos

QCD uncertainties in PeV neutrino studies

@ Uncertainties in atmospheric neutrino flux
(background of cosmic neutrinos) dominated by those
on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

@ Recent progress in addressing such

uncertainties on the nuclear side
R. Enberg, et al., PRD 78 043005,2008;

R. Gauld, et al., JHEP 1511 (2015) 009

@ not on the projectile side, where the proton
charm content can matter at large x

ud U.) AFTER@LHC

10 . 16V o 5 5]

logioE [GeV]

FIG. 6 (color online). Prompt muon neutrino fluxes obtained in
perturbative QCD. The shaded arca represents the theoretical
uncertainty in the prompt neutrino flux evaluated in this paper,
and the solid line in the band is our standard result. The dashed
curve is the NLO perturbative QCD calculation of Ref. [14]
(PRS), modified here to include fragmentation; the dotted curve
is the saturation model result of Ref. [16] (MRS); and the dash-
dotted curve is the LO perturbative QCD calculation of Ref. [15]
(TIG).
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@ Uncertainties in atmospheric neutrino flux
(background of cosmic neutrinos) dominated by those
on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856
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is the saturation model result of Ref. [16] (MRS); and the dash-
R. Gal.lld, et al‘) ]HEP 1511 (2015) 009 :V;ilé/;] curve is the LO perturbative QCD calculation of Ref. [15]
@ not on the projectile side, where the proton e — sz
charm content can matter at large x
@ Charm measurements at the LHC are not

of great help E. Riehn,et al., EP] W. C. 99 (2015) 12001

oT oz s 3 7

5o
Feynman-x z¢
Figure 8. Weighted spectrum for D-mesons in SIBYLL at
Vs = 7TeV. The contributions from the perturbative and non-
perturbative model components are shown by the blue and red
Tines, respectively. Note the negligible contribution to the energy
spectrum from the phase space covered by the LHCb experiment
(2.5 <y < 4.5, green line)
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i curve is the NLO perturbative QCD calculation of Ref. [14]

R. Enberg, et al., PRD 78 043005,2008; (PRS), modified here to include fragmentation; the dotted curve

is the saturation model result of Ref. [16] (MRS); and the dash-
dotted curve is the LO perturbative QCD calculation of Ref. [15]

R. Gauld, et al., JHEP 1511 (2015) 009 P

— sibyli2.3rc1
-~ non-perturbative
-~ perturbative

@ not on the projectile side, where the proton
charm content can matter at large x

@ Charm measurements at the LHC are not
of great help E. Riehn,et al., EP] W. C. 99 (2015) 12001

e However, LHCb used in the fixed-target : F;;nman;};

Figure 8. Weighted spectrum for D-mesons in SIBYLL at
mode has a much better coverage
. 5 2 Vs = 7TeV. The contributions from the perturbative and non-
x;f’”’d" = ZE"‘T sinh (yl“h ) “ = —"T __ inh (yl“h 4.8) perturbative model components are shown by the blue and red
b V2N Epeqm lines, respectively. Note the negligible contribution to the energy
FT D FT, D lab. spectrum from the phase space covered by the LHCb experiment
(P =0, )’ =2)=—-02; Xp (P'[ =4GeV, y =2)=-06 (2.5 < y < 4.5, green line).

Sud U.) AFTER@LHC April 13, 2016 46 /36




Heavy-quark content of the proton and UHECR neutrinos

QCD uncertainties in PeV neutrino studies

@ Uncertainties in atmospheric neutrino flux
(background of cosmic neutrinos) dominated by those
on charmed meson decays
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@ Recent progress in addressing such L ———
perturbative QCD. The shaded area represents the theoretical
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uncertainties on the nuclear side e i el e e
i curve is the NLO perturbative QCD calculation of Ref. [14]
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R. Gauld, ef al., JHEP 1511 (2015) 009 :;m» curve is the LO perturbative QCD calculation of Re!
@ not on the projectile side, where the proton — s

charm content can matter at large x

Charm measurements at the LHC are not
of great help E. Riehn,et al., EP] W. C. 99 (2015) 12001

However, LHCb used in the fixed-target

Y
mode has a much better coverage Figure 8. Weighed spctm for Dmesons in SIBYLL
Similar conclusion for the ALICE muon Satates oAl components s S5 .t s v

Tines, respectively. Note the negligible contribution to the energy
spectrum from the phase space covered by the LHCb experiment
(2.5 <y <425, green line)
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Heavy-quark content of the proton and UHECR neutrinos

The beam extraction with a bent crystal

o Inter-crystalline fields are huge

Ge (110), 450 GeV protons
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Heavy-quark content of the proton and UHECR neutrinos

The beam extraction with a bent crystal

o Inter-crystalline fields are huge

Ge (110), 450 GeV protons
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@ The channeling efficiency is high for a deflection of a few mrad
@ One can extract a significant part of the beam loss (10°p*s™")
@ Simple and robust way to extract the most energetic beam ever:
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uark content of the proton and UHECR neutrinos

The beam extraction: news

UAQ installation in the SPS

Prototype crystal collimation system at SPS :

* local beam loss reduction (5+20x reduction
for proton beam)

® beam loss map show average loss reduction
in the entire SPS ring

* halo extraction efficiency
70+80% for protons (50+70% for Pb)

AFTER@LHC

A solid state primary
collimator-scatterer

Goal :assess the possibility to use bent crystals as primary
collimators in hadronic accelerators and colliders

Bent-crystal
as primary
collimator
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Heavy-quark content of the proton and UHECR neutrinos

The beam extraction: news

[ S. Montesano, Physics at AFTER using| Goal : assess the possibility to use bent crystals as primary

LHC beams, ECT* Trento, Feb. 2013]

VL

o0 9AY

A(

i | uAginstaliation in the SPS M
I

i Prototype crystal collimation system at

collimators in hadronic accelerators and colliders

* local beam loss reduction (5+20x reductlon

for proton beam)

¢ beam loss map show average loss reduction

in the entire SPS ring
* halo extraction efficiency

70+80% for protons (50+70% for Pb)

sberg (IPNO,

AFTER@LHC

LUAS future installation in LHC
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Heavy-quark content of the proton and UHECR neutrinos

The beam extraction: news

[ 5. Montesano, Pliysics at AFTER using| Goal :assess the possibility to use bent crystals as primary
LHC beams, ECT* Trento, Feb. 2013] collimators in hadronic accelerators and colliders

LUAS future installation in LHC

b 20VE
ON0 - 2Y
UAQ installation in the SPS l@\‘b

I,
Prototype crystal collimation system at SPS :

Towards an installation in the LHC : propose and

* local beam loss reduction (5+20x reduction install during LS| a min. number of devices
for proton beam) * 2 crystals
* beam loss map show average loss reduction
in the entire SPS ring Long term plan is ambitious : propose a collimation
* halo extraction efficiency system based on bent crystals for the upgrade of
70+80% for protons (50+70% for Pb) the current LHC collimation system

sberg (IPNO, Paris-S J. AFTER@LHC April 13, 2016 48/ 36



the proton and UHECR neutrinos

Simone Montesano - February 11th, 2013 - Physics at AFTER using the LHC beams

Crystal resistance to irradiation

(Biryukov et al, NIMB 234, 23-30):

70 GeV protons, 50 ms spills of
several minutes irradiation

NA48 - Biino et al, CERN-SL-96-30-EA
equivalent to 2 nominal LHC bunches for 500 turns every 10 s

5 mm silicon crystal %

(Biino et al, CERN-SL-96-30-EA):

450 GeV protons, 2.4 s spill of 5 x 102 protons every 14.4 s, one year
irradiation in total,

Deflection efficiency [%]

equivalent to several year of operation for a primary collimator in LHC

12.0 14.0 16.0 18.0

10 x 50 x 0.9 mm?3 silicon crystal, 0.8 x 0.3 mm? area irradiated,
Vertical position onthe crystal [mm]

(HiRadMat facility, November 2012): incident beam

440 GeV protons, up to 288 bunches , 1.1 x 10" protons per bunch
(¢ in total)

energy deposition comparable to an asynchronous beam dump in LHC

deflected beam

3 mm long silicon crystal
, more tests planned to assess possible crystal lattice damage

and residual dose Smm  Biryukovetal,
— NIMB 234, 23-30

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop, Physics at AFTER using the LHC beams (Feb. 2013

J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC April 13, 2016



Heavy-quark content of the proton and UHECR neutrinos

A few figures on the (extracted) proton beam

@ Beam loss: 10° p*s™!

o EXtraCted intensity: 5x 108 p+S_1 (1/2 the beam IOSS) E. Uggerhoj, U.I Uggerhoj, NIM B 234 (2005) 31
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A few figures on the (extracted) proton beam

@ Beam loss: 10° p*s™!

@ Extracted intensity: 5 x 10 p*s™ (1/2 the beam loss) E. Uggerhoj, U1 Uggerhoj, NIM B 234 (2005) 31
@ Number of p*: 2808 bunches of 1.15 x 10"'p* = 3.2 x 10Mp*

@ Revolution frequency: Each bunch passes the extraction point at a rate of

3.10° km.s~' /27 km = 11 kHz

Extracted “mini” bunches:

o the crystal sees 2808 x 11000 s™' ~ 3.10” bunches s
e one extracts 5.108/3.107 ~ 15p™ from each bunch at each pass
o Provided that the probability of interaction with the target is below 5%,

pile-up is not an issue
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A few figures on the (extracted) proton beam

@ Beam loss: 10° p*s™!

@ Extracted intensity: 5 x 10 p*s™ (1/2 the beam loss) E. Uggerhoj, U1 Uggerhoj, NIM B 234 (2005) 31
@ Number of p*: 2808 bunches of 1.15 x 10"'p* = 3.2 x 10Mp*

@ Revolution frequency: Each bunch passes the extraction point at a rate of

3.10° km.s~' /27 km = 11 kHz

Extracted “mini” bunches:

o the crystal sees 2808 x 11000 s™' ~ 3.10” bunches s
e one extracts 5.108/3.107 ~ 15p™ from each bunch at each pass
o Provided that the probability of interaction with the target is below 5%,

@ Extraction over a 10h fill: pile-up is not an issue

o 5x10%p* x3600sh™ x10h = 1.8 x 10"*p* fill”*
o This means 1.8 x 10*/3.2 x 10" ~ 5.6% of the p* in the beam
These protons are lost anyway !

@ similar figures for the Pb-beam extraction
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Heavy-quark content of the proton and UHECR neutrinos

LHB

Our idea is not completely new

NUCLEAR

INSTRUMENTS
Nuclear Instruments and Methods in Physics Research A 333 (1993) 125-135 & METHODS

North-Holland IN PHYSICS

RESEARCH
SectionA

LHB, a fixed target experiment at LHC to measure CP violation
in B mesons

Flavio Costantini

University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is
given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels B® — I/ +
KE, B? = % 7. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon ¢rystal, Recent results
on beam extraction efficiencies measured at CERN SPS based on this technique are presented.
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he proton and UHECR neut:

LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to
measure CP violation in the B system based on the
possibility of extracting the 8 TeV LHC proton beam
using a bent silicon crystal [4]. A 10% extraction effi- LA GE
ciency of the LHC beam halo will give an extracted
beam intensity of about 10* protons/s allowing the
production of as many as 10'° BB pairs per year, i.c.
about two orders of magnitude more than what coutd
be produced by an e¢*¢” asymmetric B factory with FA ORY
10** em~25~! luminosity [5). LETTER OF INTENT
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1. Introduction

This paper presents a fixed target experiment to
measure CP violation in the B system based on the
possibility of extracting the 8 TeV LHC proton beam
using a bent silicon crystal [4]. A 10% extraction efff- = . -
ciency of the LHC beam halo will give an cxlraclcdlolo BB pawirs per year LA GE
beam intensity of about 10* protons/s allowing the
production of as many as 10'° BB pairs per year, i.c.
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10** em~25~! luminosity [5). LETTER OF INTENT

@ B-factories: 1ab™! means 10° BB pairs
@ For LHCb, typically 1 fb™" means =~ 2 x 10" BB pairs at 14 TeV

@ LHB turned down in favour of LHCb mainly because of the fear of a premature
degradation of the bent crystal due to radiation damages.
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Heavy-quark content of the proton and UHECR neutrinos

LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to
measure CP violation in the B system based on the
possibility of extracting the 8 TeV LHC proton beam
using a bent silicon crystal [4]. A 10% extraction efff- = . -
ciency of the LHC beam halo will give an cxlraclcdlolo BB pawirs per year LA GE
beam intensity of about 10* protons/s allowing the
production of as many as 10'° BB pairs per year, i.c.
about two orders of magnitude more than what could
be produced by an e¢*¢” asymmetric B factory with FA ORY
10** em~25~! luminosity [5). LETTER OF INTENT

@ B-factories: 1ab™! means 10° BB pairs
For LHCD, typically 1 fb™" means ~ 2 x 10" BB pairs at 14 TeV

@ LHB turned down in favour of LHCb mainly because of the fear of a premature
degradation of the bent crystal due to radiation damages.

Nowadays, degradation is known to be ~ 6% per 10*° particles/cm?

10*° particles/cm? : one year of operation for realistic conditions
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LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to
measure CP violation in the B system based on the
possibility of extracting the 8 TeV LHC proton beam
using a bent silicon crystal [4]. A 10% extraction efff- = . -
ciency of the LHC beam halo will give an cxlraclcdlolo BB pawirs per year LA GE
beam intensity of about 10* protons/s allowing the
production of as many as 10'° BB pairs per year, i.c.
about two orders of magnitude more than what could
be produced by an e¢*¢” asymmetric B factory with FA ORY
10** em~25~! luminosity [5). LETTER OF INTENT

@ B-factories: 1ab™! means 10° BB pairs
For LHCD, typically 1 fb™" means ~ 2 x 10" BB pairs at 14 TeV

@ LHB turned down in favour of LHCb mainly because of the fear of a premature
degradation of the bent crystal due to radiation damages.

Nowadays, degradation is known to be ~ 6% per 10*° particles/cm?

10*° particles/cm? : one year of operation for realistic conditions

After a year, one simply moves the crystal by less than one mm ...
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Accessing the large x glue with quarkonia:

very backward region

PZ(')FI/-IIA( sig:l)ation 1_ o J/W— pp - PYTHIA C. Hidji:laki.s ..
a(y) / o(y=0. . — -
statistics for one month = N pp at Vs = 115 GeV .

9 i S 1 month .
5% acceptance considered n = -

g r 5% acceptance

Statistical relative uncertainty = o n
Large statistics allow to access & - n

L L

I MSTW gluon uncertainty

Jv . "
You~ 0 — x,=0.03 y

Yem ~-3.6 — x5 =1

Gluon uncertainty from
MSTWPDF
- only for the gluon content of
the target
- assuming

X, = M /s eveM

ol

™M

= Backward measurements allow to access large x gluon pdf

Y: larger X for same ycm

You~ 0 —x;=0.08 Assuming that we understand the
Yom ~ 2.4 — X5 =1

quarkonium-production mechanisms
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