The model

Tania Robens

based on

G.M. Pruna, TR (PRD 88 (2013) 115012) D. Lopez-Val, TR (PRD 90 (2014) 114018) TR, T. Stefaniak (EPJC (2015) 75:105, arXiv:1601.07880)

F. Bojarski, G. Chalons, D. Lopez-Val, TR (JHEP 1602 (2016) 147)

TU Dresden

DIS 2016

DESY Hamburg, Hamburg, Germany 13.4.2016

The model

Higgs Singlet extension (aka The Higgs portal)

The model

- Singlet extension: simplest extension of the SM Higgs sector
- add an additional scalar, singlet under SM gauge groups (further reduction of terms: impose additional symmetries)
- \Rightarrow potential (H doublet, χ real singlet)

$$\mathbf{V} = -\mathbf{m}^{2}\mathbf{H}^{\dagger}\mathbf{H} - \mu^{2}\chi^{2} + \lambda_{1}(\mathbf{H}^{\dagger}\mathbf{H})^{2} + \lambda_{2}\chi^{4} + \lambda_{3}\mathbf{H}^{\dagger}\mathbf{H}\chi^{2},$$

- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...
- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV

4□▶ 4周▶ 4분▶ 4분▶ 분 900 Tania Robens Singlet DIS. 13.4.2016

Summary

Singlet extension: free parameters in the potential

VeVs:
$$H \equiv \begin{pmatrix} 0 \\ \frac{\tilde{h}+v}{\sqrt{2}} \end{pmatrix}$$
, $\chi \equiv \frac{h'+x}{\sqrt{2}}$.

• potential: 5 free parameters: 3 couplings, 2 VeVs

$$\lambda_1, \lambda_2, \lambda_3, v, x$$

rewrite as

$$\mathbf{m_h}, \, \mathbf{m_H}, \, \sin \, \alpha, \, \mathbf{v}, \, \tan \beta$$

fixed, free

$$\sin \alpha$$
: mixing angle, $\tan \beta = \frac{v}{x}$

• physical states $(m_h < m_H)$:

$$\left(\begin{array}{c}\mathbf{h}\\\mathbf{H}\end{array}\right)=\left(\begin{array}{cc}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{array}\right)\left(\begin{array}{c}\tilde{h}\\h'\end{array}\right),$$

Appendix

Phenomenology (in the following: focus on $m_h \sim 125\,\mathrm{GeV}$)

- SM-like couplings of light/ heavy Higgs: rescaled by $\sin \alpha$, $\cos \alpha$
- in addition: new physics channel: $H \rightarrow hh$

$$\Gamma_{\text{tot}}(H) = \sin^2 \alpha \, \Gamma_{\text{SM}}(H) + \Gamma_{H \to h \, h},$$

SM like decays parametrized by

$$\kappa \, \equiv \, \frac{\sigma_{\rm BSM} \, \times \, {\rm BR}_{\rm BSM}}{\sigma_{\rm SM} \, \times \, {\rm BR}_{\rm SM}} \, = \, \frac{\sin^4 \alpha \, \Gamma_{\rm tot,SM}}{\Gamma_{\rm tot}}$$

new physics channel parametrized by

$$\kappa' \equiv \frac{\sigma_{\rm BSM} \times {\rm BR}_{H \to h \, h}}{\sigma_{\rm SM}} = \frac{\sin^2 \alpha \, \Gamma_{H \to h \, h}}{\Gamma_{\rm tot}}$$

our studies: $m_{h,H} = 125.09 \,\mathrm{GeV}, \, 0 \,\mathrm{GeV} \leq m_{H,h} \leq 1 \,\mathrm{TeV}$

- Iimits from perturbative unitarity
- 2 limits from EW precision observables through S, T, U
- special: limits from W-boson mass as precision observable
- perturbativity of the couplings (up to certain scales*)
- vacuum stability and minimum condition (up to certain scales*)
- o collider limits using HiggsBounds
- measurement of light Higgs signal rates using HiggsSignals and ATLAS-CONF-2015-044 [signal strength combination]

(debatable: minimization up to arbitrary scales, \Rightarrow perturbative unitarity to arbitrary high scales [these are common procedures though in the SM case])

(*): only for $m_h = 125.09 \, {\rm GeV}$

Tania Robens

Results

• strongest constraints:

```
m_H \gtrsim 800 \, {\rm GeV} : perturbativity of couplings
```

 $m_H \in [270; 800] \text{GeV} : m_W \text{ @ NLO}$

 $m_H \in [175; 270] \text{GeV}$: experimental searches

 $m_H \in [120; 175] \text{GeV}$: signal strength

 $m_h \lesssim 120 \, {\rm GeV}$: SM-like Higgs coupling rates (+ LEP)

 $\Rightarrow \kappa < 0.25$ for all masses considered here

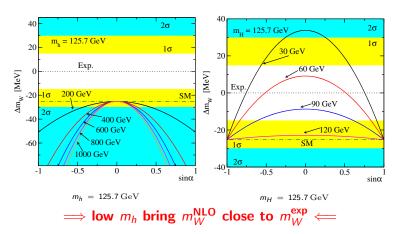
$$\Gamma_{\rm tot} \lesssim 0.02 \, m_H$$

- ⇒ Highly (??) suppressed, narrow(er) heavy scalars ←
- ⇒ new (easier ?) strategies needed wrt searches for SM-like Higgs bosons in this mass range ←

[width studies (~ 2015): cf. Maina; Kauer, O'Brien; Kauer, O'Brien, Vryonidou; Ballestrero, Maina; Dawson,

The model

NLO corrections to m_W (D. Lopez-Val, TR, PRD 90 (2014) 114018),

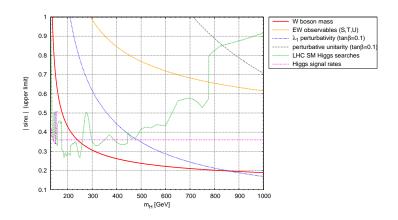

- electroweak fits: fit $\mathcal{O}(20)$ parameters, constraining S, T, U
- idea here: single out m_W , measured with error $\sim 10^{-4}$
- setup renormalization for Higgs and Gauge boson masses
- EW gauge and matter sector: on-shell scheme
- Higgs sector: several choices, currently a mixture of onshell/ MS

(in this case: $\delta \lambda$ only enter at 2-loop \Longrightarrow not relevant here)

• first step on the road to full renormalization

NLO corrections to m_W (D. Lopez-Val, TR, PRD 90 (2014) 114018)

Contribution to m_W for different Higgs masses

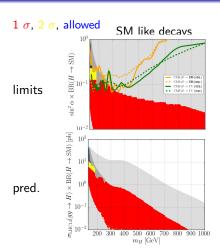


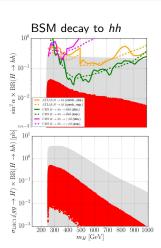
Tania Robens Singlet DIS, 13.4.2016

The model

Appendix

Combined limits on $|\sin \alpha|$ (TR, T. Stefaniak, arXiv:1601.07880)




several bounds on $|\sin \alpha|$

m_W, perturbativity, LHC direct searches, Higgs Signal strength

Tania Robens Singlet DIS. 13.4.2016

Results from generic scans and predictions for LHC 14 (TR, T. Stefaniak, arXiv:1601.07880)

Full renormalization (1)

(F. Bojarski, G. Chalons, D. Lopez-Val, TR, JHEP 1602 (2016) 147)

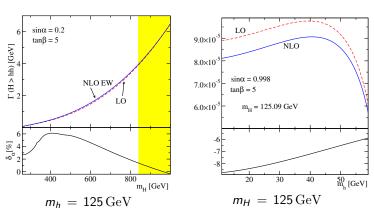
- next topic: full electroweak renormalization
- many parts of ew sector: follow SM prescriptions
- new: renormalize

$$T_{h,H}; v; x; m_{h,H}^2; Z_{h,H,hH,Hh}; m_{hH}^2$$

- \Rightarrow in total: 11 parameters in scalar sector
- ⇒ need to be determined by suitable renormalization conditions

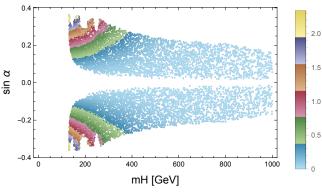
DIS. 13.4.2016

Full renormalization (2)


The model

⇒ Our choices **←**

- Tadpoles: $\delta T = -T [\hat{\tau} = 0]$
- v: as in SM, on-shell (ie through ew gauge sector)
- $\delta x = 0$ (not fixed by any measurement) !!! choice !!! [no UV-divergence ! ; Sperling ea, 2013]
- $\delta m_{h,H}$, $\delta Z_{H,h}$: on-shell
- difficult part **off-diagonal terms** m_{hH}^2 , δZ_{hH} !!
- we choose: 'improved on-shell scheme' !!
- for the experts: leads to gauge-invariant counterterms without resorting to physical measurements; tested via SloopS (Boudjema, Semenov, Temes 2005; Baro, Boudjema, Semenov 2007/2008;Baro, Boudjema 2009)
- based on 'Pinch Technique' (Cornwall 1982; Cornwall, Pappavassoliou 1989; Espinosa, Yamada, 2002; Binosi, Papavassiliou 2009;...)


Tania Robens Singlet DIS. 13.4.2016

... just some numerical results for allowed regions...

"typical" size of corrections

... is colorful...

 $\sigma(pp \rightarrow hH)[\mathrm{fb}]$, 13 TeV LHC

The model

- Singlet extension: simplest extension of the SM Higgs sector, easily identified with one of the benchmark scenarios of the HHXWG (cf. also YR3, Snowmass report)
- constraints on maximal mixing from m_W at NLO $(m_H \in [200 \,\mathrm{GeV}; 800 \,\mathrm{GeV}])$, experimental searches and fits $(m_{H,h} \le 200 \,\mathrm{GeV})$ and/ or running couplings $(m_H \geq 800 \,\mathrm{GeV})$
- quite narrow widths wrt SM-like Higgses in this mass range ⇒ **better theoretical handle**
- quite large suppression from current experimental/ theoretical constraints
 - !!! still, large numbers could have been produced already !!! ⇒ STAY TUNED ←

Tania Robens Singlet DIS. 13.4.2016

The model

$$m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (1)

$$m_H^2 = \lambda_1 v^2 + \lambda_2 x^2 + \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2},$$
 (2)

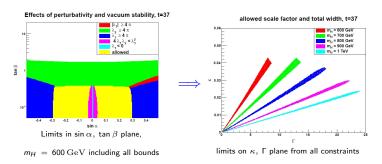
$$\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}},$$
 (3)

$$\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}.$$
 (4)

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vacuum stability and perturbativity of couplings at

- arbitrary scalesclear: vacuum should be stable for large scales
- unclear: do we need ew-like breaking everywhere?
 perturbativity?
- ⇒ check at relative low scale (cf next slide)
- \Rightarrow bottom line: small mixings excluded from stability for larger scales (for $m_H \leq 1 \, {\rm TeV}$!! for the model-builders...)
 - arbitrary large m_H can cure this !! cf Lebedev; Elias-Miro ea. Out of collider range though ($\sim 10^8 \, \mathrm{GeV}$)
 - perturbativity of couplings severely restricts parameter space, even for low scales


Tania Robens Singlet DIS. 13.4.2016

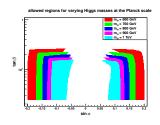
Question: at which scale did we require perturbativity? Answer: "just above" the SM breakdown (other answers equally valid...)

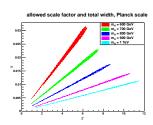
- RGEs for this model well-known (cf eg Schabinger, Wells)
- decoupling ($\lambda_3 = 0$): recover SM case
- in our setup: $\mu_{\rm SM,break} \sim 6.3 \times 10^{10} \, {\rm GeV}$ (remark: just simple NLO running)
- we took: $\mu_R \sim 1.2 \times 10^{11} \, {\rm GeV}$ (higher scales \iff stronger constraints)
- obvious: for $m_H \sim 125\,{\rm GeV}$, breakdown "immediate" when going to $\mu_{\rm run} > v$
- ⇒ disregard constraints from running in this case

<ロ > ← □ > ← □ > ← □ > ← □ = − の へ ○ Tania Robens Singlet DIS. 13.4.2016

The model

for $\sin \alpha \leq 0.23$: only λ_2 running important


(sideremark: here, 1σ constraint on mixing from μ ; relaxed and improved in newer work, just as an example here)


Tania Robens Singlet DIS. 13.4.2016

$m_H[{ m GeV}]$	$ \sin lpha $	source upper limit	$(aneta)_{max}$
1000	[0.020; 0.16]	λ_1 perturbativity	0.21
800	[0.028; 0.20]	m_W at NLO/ λ_1 perturbativity	0.26
600	[0.038; 0.22]	m_W at NLO	0.36
400	[0.057; 0.26]	m_W at NLO	0.54
200	[0.092; 0.43]	m_W at NLO	1.08
180	[0.10; 0.46]	126 GeV signal strength	1.20
160	[0.12; 0.46]	126 GeV signal strength	1.34
140	[0.17; 0.34]	$h o \ell^+ \ell^- \ell^+ \ell^-$	1.54

- $\sin \alpha_{\min}$ always from vacuum stability
- $\tan \beta_{\text{max}}$ always from **perturbativity of** λ_2

Tania Robens Singlet DIS, 13.4.2016 assume that the model is valid up to $\mu_{
m run} \sim 10^{19}\,{
m GeV}$ (not always well motivated)

- naturally: parameter space more restricted
- translates to $\kappa \lesssim 0.03$ for $m_H = 600 \, \mathrm{GeV}$ (25 % decrease)
- now: μ no longer relevant, only constraint from perturbativity of $\lambda_1, \, \lambda_2$

 ←□ → ←□ → ←□ → ←□ → ←□ → □
 □ → ←□ → ←□ → □

 Tania Robens
 Singlet
 DIS, 13.4.2016

all numbers below:
$$\sqrt{S_{\text{hadr}}} = 8 \text{TeV}, \int \mathcal{L} = 23 \, \text{fb}^{-1}$$

$m_{H}[{ m GeV}]$	κ_{max}	$\# \mathbf{g} \mathbf{g} \sim$	κ'_{max}	# gg ∼
200	0.18	3×10^4	0	0
300	0.076	6×10^3	0.038	3×10^3
400	0.053	4×10^3	0.021	1×10^3
500	0.047	1×10^3	0.015	440
600	0.039	470	0.012	140
700	0.035	180	0.010	50
800	0.033	80	0.009	20
900	0.027	40	0.007	10
1000	0.021	15	0.005	4

[for specific final state, multiply with SM-like BR (LO approx)] for $m_H \lesssim 600 \, {\rm GeV}$, may could already have been produced which are not excluded by current searches_!!

Tania Robens Singlet DIS. 13.4.2016

Appendix

What about the "inverse" scenario, ie. $m_H = 125.7 \,\mathrm{GeV}$

mainly ruled out by LEP and/ or χ^2 fit from HiggsSignals however, still large number produced due to large $\sigma_{gg \rightarrow h}$

$m_h[{ m GeV}]$	$ \sin \alpha _{\mathrm{min,\ exp}}$	$ \sin \alpha _{\min, 2\sigma}$	$(aneta)_{max}$	$ $ #gg \sim
110	0.82	0.89	9.2	10 ⁵
100	0.86		10.1	10 ⁵
90	0.91		11.2	10 ⁵
80	0.98		12.6	10 ⁴
70	0.99		14.4	10 ⁴
60	0.98	$\gtrsim 0.99$	16.8	10 ⁴
50	0.99	$\gtrsim 0.99$	20.2	10 ⁴
40	0.99	$\gtrsim 0.99$	25.2	10 ⁴

Table: Upper limit on tan β from perturbative unitarity. (—— means no additional constraint)

(side remark: for $m_h \gtrsim 60\,{\rm GeV}$, tan β irrelevant for collider observables) Tania Robens DIS, 13.4.2016

("it"=LO,NLO,...)

- LO: any tool talking to FeynRules (in principle)/ LanHep (in practice)
- implemented and run: CompHep (M. Pruna), Sherpa (\pm) (would need some modification, T. Figy), privately modified codes (??)
- NLO: (mb) a modified version of aMC@NLO (R. Frederix) ?? (production only; might be important for VBF)
- new tool in the MadGraph environment (Artoisenet ea, 06/13):
 QCD-part of NLO
- complete higher orders: would need to be implemented in respective tools (I am not aware of any at the moment)

Tania Robens Singlet DIS, 13.4.2016

One more word about $H \rightarrow hh$

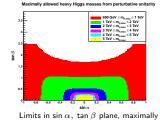
- all above: focuses on SM-like decays
- viable alternative: search for

$$H \rightarrow hh \rightarrow ...$$

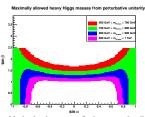
- widely discussed in the literature (for recent work, cf Gouzevitch, Oliveira, Rojo, Rosenfeld, Salam, Sanz; Cooper, Konstantinidis, Lambourne, Wardrope; ...)
- HOWEVER in our scan, WW always dominant
- ⇒ would go for this first (but mb more than 1 group is interested...)

Perturbative unitarity:

- ullet tests combined system of all (relevant) 2 o 2 scattering amplitudes for $s o \infty$
- we considered:


$$WW$$
, ZZ , HH , Hh , $hh \rightarrow WW$, ZZ , HH , Hh , hh

- makes sure that the largest eigenvalue for the "0"-mode partial wave of the diagnolized system ≤ 0.5
- "crude" check that unitarity is not violated
 (Literature: Lee/ Quigg/ Thacker, Phys. Rev. D 16, 1519 (1977))
 (in the end: all "beaten" by perturbativity of running couplings)

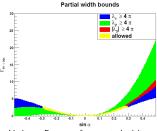

Tania Robens Singlet DIS. 13.4.2016

Comments on constraints (1) - Perturbativity issues

- we tested: $maximal m_H$ from PU
 - \implies strongest constraints from $HH \rightarrow HH \Longleftarrow$
- rule of thumb (exact for $\alpha=0$): $\tan^2\beta \leq \frac{16\pi v^2}{3 m_H^2}$

allowed m_H from PU

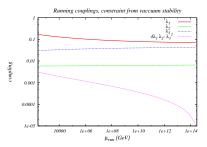
Limits in $\sin \alpha$, $\tan \beta$ plane, maximally


allowed $m_H \, \leq \, 1 \, {
m TeV}$ from PU

 \implies for realistic $\sin \alpha$ and our m_H range, $\tan \beta \lesssim 8$

Comments on constraints (2) - running couplings and vacuum

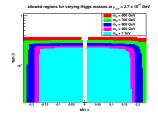
- **1** perturbativity: $|\lambda_{1,2,3}(\mu_{\text{run}})| < 4\pi$
- 2 potential bounded from below: $\lambda_1, \lambda_2 > 0$
- **3** potential has local minimum: $4\lambda_1\lambda_2 \lambda_3^2 > 0$
 - \implies need (2), can debate about (1), (3) at all scales \iff

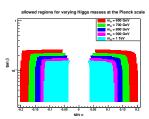

limits on $\Gamma_{H \to hh}$, $m_H = 600 \,\mathrm{GeV}$

- Limits on $\Gamma_{H \to h h}$ from perturbativity
- constraint from μ on $\sin \alpha$: $\Gamma_{H \to hh}$ already small ($\lesssim 0.08 \, m_H$)
- running of couplings: even stronger constraints

RGE running: a caveat (1)

- ullet important for collider constraints: maximal value of $|\sin lpha|$
- ullet important for vacuum stability: minimal value of $|\sin \alpha|$
- important here: $4 \lambda_1 \lambda_2 \geq \lambda_3^2$
- sometimes: this is (nearly) violated for running over large scales





RGE running: a caveat (2)

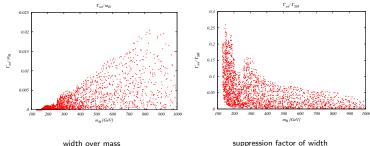
The model

- ⇒ could in principle argue that higher orders are needed
- ⇒ one possible way to quantify: neglect this condition
- \Rightarrow now $|\sin \alpha|_{\min}$ follows from $\lambda_1 \geq 0$.

low scale, third condition neglected

Planck scale, third condition neglected

⇒ back to vacuum stability problem of SM ← no important consequences for discovery prospects


Tania Robens Singlet DIS, 13,4,2016

RGE running: variation of input parameters

- especially in sensitive cases, but also otherwise:
 check robustness against input parameters
- here: especially important in decoupling (ie SM-like) case
 (cf. various discussions in the literature...)
- our check: vary $\alpha_s(m_Z)$, $y_t(m_t)$ for 1 σ around central values
- main impact: **on vacuum stability**, ie $\lambda_1 > 0$ condition
- no significant change in $\kappa_{max}(m_H),...$
- ⇒ not relevant for collider studies (at this stage...)

Interim comment on total width

Total width greatly reduced

suppression factor of width

Higher order corrections in the Singlet extension (3) - width and on-shellness

- is the width small enough to neglect "broadness" complications ?
- naive argument: error

$$\sim\,\frac{\Gamma_H}{m_H}\,\lesssim\,2\,\%$$

- ⇒ might be OK for a rough estimate
 - another point: "sideband" complications vanish
- ⇒ low-mass case: interference effects? (currently limited from signal strength fits (via Γ_{inv}))

□ ▶ ◀ ∰ ▶ ◀ 臺 ▶ ◀ 臺 ▶ ■ ● ♥ Q ⓒ
DIS, 13.4.2016