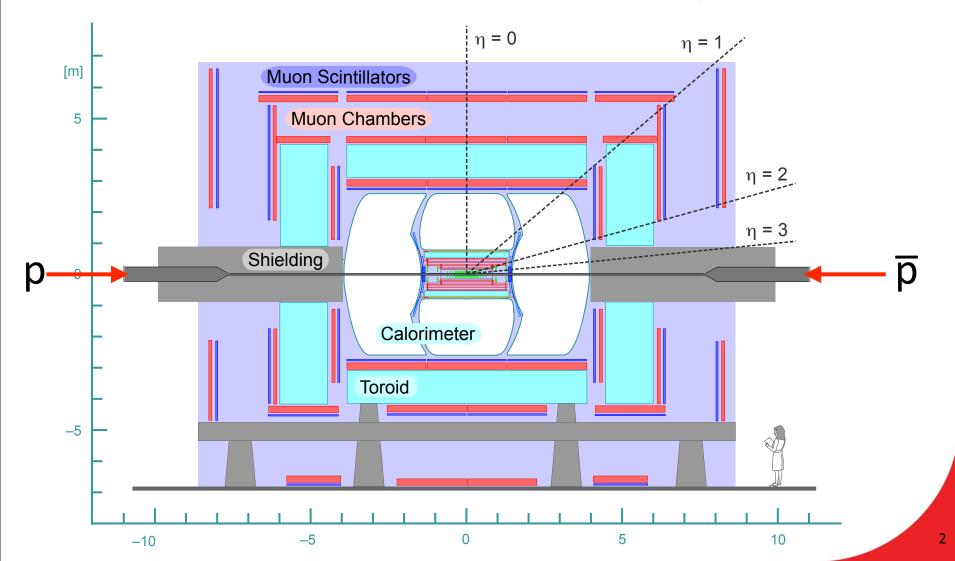
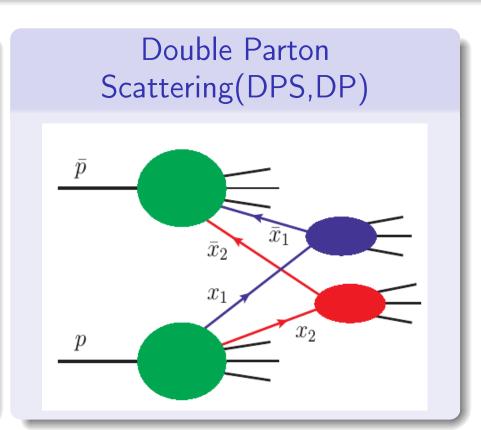


Double Parton Scattering in pp Interactions

Simultaneous J/ψ and Υ production Diphoton + Dijet events


Iain Bertram, Lancaster University for the D0 Collaboration DIS 2016 - 14 April 2016


The D0 Detector

• Multi-purpose, high acceptance, well understood detector. Excellent jet reconstruction, muon id and acceptance. $\int \mathscr{L} dt \sim 10 \text{ fb}^{-1}$

Single Parton Scattering(SPS,SP) \bar{p}

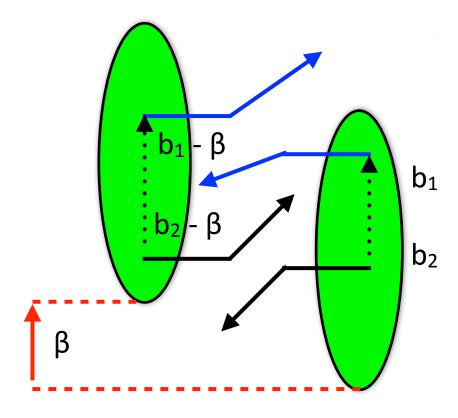
Double Parton Scattering

$$\gamma\gamma + 2jets$$
, $W + 2jets$

dominated by qg + gg

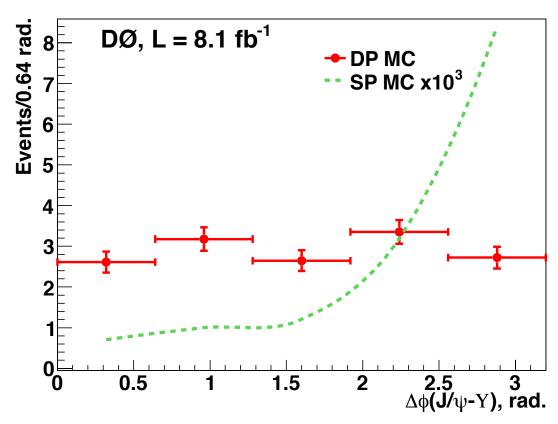
$$\gamma$$
 + 3 jets

dominated by gg + gg

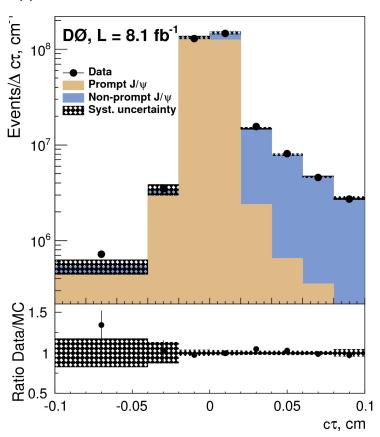

4*jets*,
$$J/\psi J/\psi$$
, $J/\psi \Upsilon$

$$\sigma_{\it eff}^{-1} = \int d^2 eta [F(eta)]^2$$

 $F(\beta) = \int f(b)f(b-\beta)d^2b$, β is the impact parameter for the two colliding hadrons, f(b) is a function describing the spatial distribution of the parton matter inside a hadron.


$$\sigma_{\mathrm{DP}}^{(1,2)} = \frac{m}{2} \frac{\sigma^{(1)} \sigma^{(2)}}{\sigma_{\mathrm{eff}}}$$

- Double parton scattering is expected to dominate at the Tevatron.
 - J/ψ and Υ should be produced in gluon-gluon interactions.
- Measure
 - Single J/ψ cross section
 - Double parton J/ψ and Υ cross section
- Estimate
 - Single Υ cross section
- Calculate


$$\sigma_{ ext{eff}} = rac{\sigma(J/\psi)\sigma(\Upsilon)}{\sigma_{ ext{DP}}(J/\psi + \Upsilon)}.$$

- Data Selection: J/ψ (Υ) → μ⁺μ⁻
 - $-p_{T}^{\mu} > 2 \text{ GeV}, |\eta^{\mu}| < 2.0$
 - For J/ψ select candidates with 2.88 < $M_{\mu\mu}$ < 3.36 GeV
 - For Υ select candidates with 9.1 < $M_{\mu\mu}$ < 10.2 GeV
- Prompt J/ψ Cross section
 - Maximum likelihood fit of cτ $c au = L_{xy} M_{J/\psi}/p_T^{J/\psi}$
 - Single J/ ψ prompt fraction is 0.83 ± 0.03 (syst.)

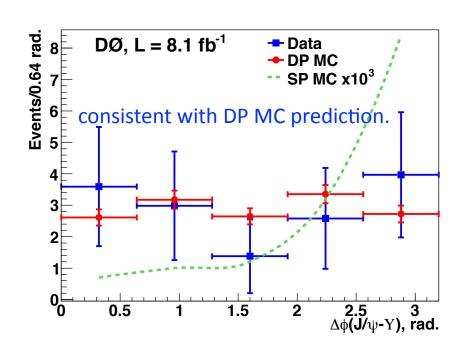
$$\sigma(J/\psi) = 28 \pm 7 \text{(syst.) nb}$$

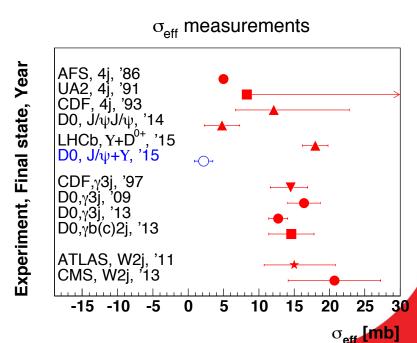
Cross section for single Y production extrapolated from previous
 D0 measurements to the fiducial region of this analysis

$$\sigma[\Upsilon(1S; 2S; 3S)] = 2.1 \pm 0.3 \text{(syst.) nb}$$

- Extract prompt number
 J/ψ and Υ events
 - fit of 2D distribution
 - Number of $J/\psi+\Upsilon$ events is 12.0 ± 3.8 (stat) ± 2.8 (syst).
 - First evidence of simultaneous production (3.2 σ)
 - Extract Cross section

 $\sigma[J/\psi + \Upsilon] = 27 \pm 9 \text{ (stat)} \pm 7 \text{ (syst) fb}$

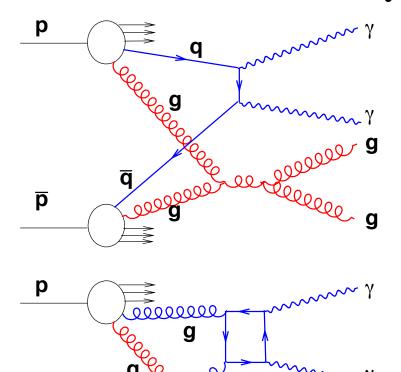




Extract σ_{eff}

$$\sigma_{\text{eff}} = 2.2 \pm 0.7(\text{stat.}) \pm 0.9(\text{syst.}) \text{ mb}$$

- Measurement consistent with D0's J/ψJ/ψ value of σ_{eff} .
- $-\sigma_{\text{eff}}$ much smaller than previously measured qq and qg dominated processes.
- possible indication that spatial region occupied by gluons smaller than that occupied by quarks



 $\overline{\mathbf{p}}$

Diphoton + Dijet events

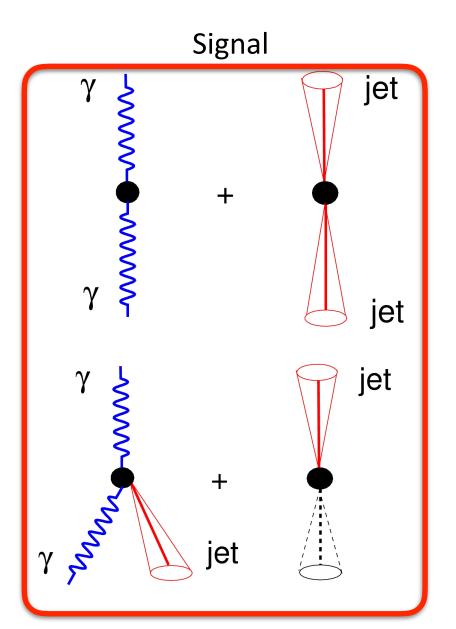
- First measurement of double parton scattering in diphoton plus dijet events
 - Need to measure the number of dijets and diphotons produced in different pp interactions in same crossing (DI).
 - Events with 2 vertices
 - Also measure double parton (DP) fraction from data using ΔS (see later).
 - Events with 1 vertex

Extract σ_{eff} using

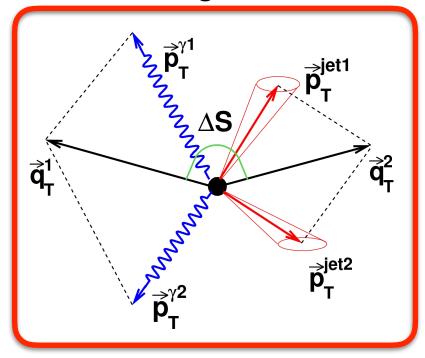
$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \, \sigma_{\rm hard},$$

where $Rc = N_c(1)/2N_c(2)$

N_c(n) is the number of beam crossings with n hard collisions


- where
$$N_{
m DI}=f_{
m DI}P_{
m DI}^{\gamma\gamma}N_{
m 2vtx}$$
 $N_{
m DP}=f_{
m DP}P_{
m DP}^{\gamma\gamma}N_{
m 1vtx}$

and $f_{DI(DP)}$ is the fraction of DP(DI) events in the sample, $P^{\gamma\gamma}$ is the diphoton purity and N_{nvtx} is the number of events with exactly 1 or 2 reconstructed primary vertices,

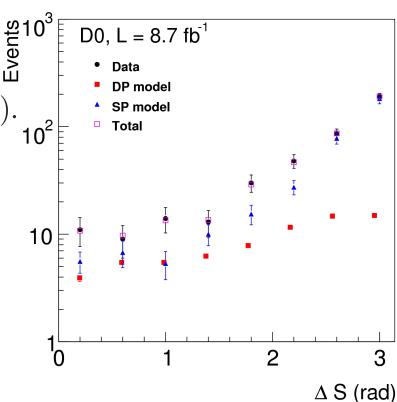

- Note the γγ and jj cross sections cancel in this ratio.
 - the ratios reduce systematic uncertainties.

Background

$$\Delta S \equiv \Delta \phi \left(\vec{q}_{\mathrm{T}}^{1}, \ \vec{q}_{\mathrm{T}}^{2} \right),$$

Use ΔS to model fraction of SP and DP events

- DP fraction is found
 - As a function of ΔS


$$f_{\rm DP}^{\rm avg} = 0.213 \pm 0.061 ({\rm stat}) \pm 0.028 ({\rm syst}).$$

- as a cross check for SP and DP model to data: $f_{DP} = 0.18 \pm 0.11$
- DI fraction calculated using charged particle fraction and photon direction.

$$f_{\rm DI} = 0.193 \pm 0.021 \text{ (stat)} \pm 0.030 \text{ (syst)}$$

- Photon purities
 - Max likelihood fit using MC templates for jets (Pythia) and photons (pythia and sherpa)

$$P_{\rm DI}^{\gamma\gamma}/P_{\rm DP}^{\gamma\gamma} = 1.002 \pm 0.039$$

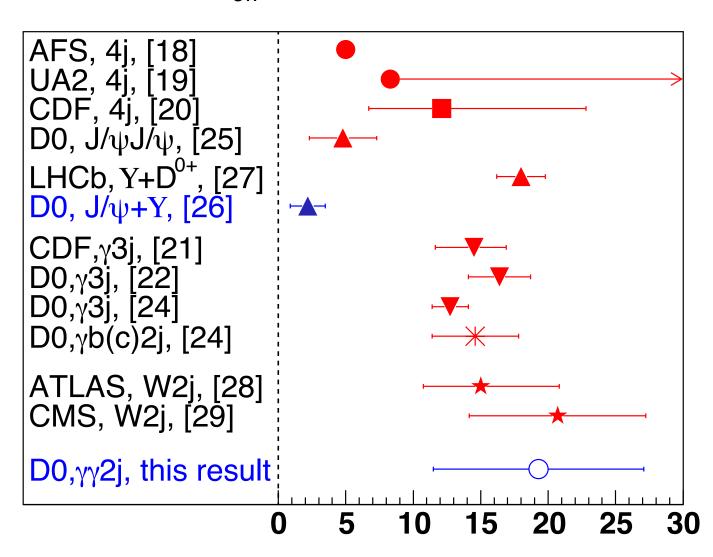
$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \, \sigma_{\rm hard},$$

- We determine that $R_c \sigma_{\rm hard} = 18.92 \pm 0.49 \; {\rm mb}$.
- giving

$$\sigma_{\rm eff} = 19.3 \pm 1.4 ({\rm stat}) \pm 7.8 ({\rm syst}) {\rm mb}.$$

and the percentage uncertainties are

$f_{\rm DP}$ $f_{\rm DI}$	EffRatio	Purity	JES	$R_{ m c}\sigma_{ m hard}$	SystTotal	StatTotal	Total
31.0 18.7	7.1	7.2	13.2	2.6	40.2	6.9	40.8



Summary of Results

$\sigma_{\rm eff}$ measurements

Conclusions

- First evidence of simultaneous production of J/ψ and Υ mesons and measurement if the effective cross section.
 - Phys. Rev. Lett. 116, 082002

$$\sigma_{\rm eff} = 2.2 \pm 0.7 ({\rm stat.}) \pm 0.9 ({\rm syst.}) \ {\rm mb}$$

- First measurement of double parton scattering in diphoton plus dijet events.
 - Phys. Rev. D 93, 052008

$$\sigma_{\rm eff} = 19.3 \pm 1.4 {\rm (stat)} \pm 7.8 {\rm (syst)} {\rm mb}.$$

$$\sigma_{\rm eff} = \frac{N_{\rm DI}}{N_{\rm DP}} \frac{A_{\rm DP}}{A_{\rm DI}} \frac{\epsilon_{\rm DP}}{\epsilon_{\rm DI}} \frac{\epsilon_{\rm 1vtx}}{\epsilon_{\rm 2vtx}} R_c \, \sigma_{\rm hard},$$

	DP	DI	Ratio
A _{DP} /A _{DI}	0.429 ± 0.008	0.826 ± 0.019	0.521 ± 0.015
ε _{DP} /ε _{DI} (sherpa)	0.477 ± 0.035	0.333 ± 0.021	1.372 ± 0.039
$\varepsilon_{_{1}}/\varepsilon_{_{2}}$ (vertex)	0.944 ± 0.003	0.922 ± 0.003	1.021 ± 0.005
PYY _{DI} / PYY _{DP}			1.002 ± 0.039

$$R_c \sigma_{\rm hard} = 18.92 \pm 0.49 \text{ mb.}$$

and the percentage uncertainties are

f_{DP}	$f_{ m DI}$	EffRatio	Purity	JES	$R_{ m c}\sigma_{ m hard}$	SystTotal	StatTotal	Total
31.0	18.7	7.1	7.2	13.2	2.6	40.2	6.9	40.8

giving

$$\sigma_{\rm eff} = 19.3 \pm 1.4 {\rm (stat)} \pm 7.8 {\rm (syst)mb.}$$