RUHR-UNIVERSITÄT BOCHUM



# Progress on Light Hadron Spectroscopy

#### Marc Pelizäus Ruhr-Universität Bochum (on behalf of the BES III Collaboration)

DIS 2016 April 11-15, 2015 DESY, Hamburg





### **BESIII Physics Program**

- Light Hadrons
  - Meson and baryon spectroscopy
  - Search for exotic hadrons, e.g. glueballs, hybrids, tetraquarks
  - Light meson decays ( $\eta^{(')}, \omega$ )
- Charmonium Physics
  - X, Y, and Z states
  - Decays and transitions
- Open Charm Physics
  - D meson decays
  - DD mixing
  - CP violation in the charm sector
- And many further topics
  - e.g. tau and two-photon physics



Further BESIII presentations at this workshop

WG 4 Heavy Flavors (Tue.) Y. Zhang, Charm Physics at BES III

WG 4 Heavy Flavors (Wed.) A. Guo, XYZ Studies at BES III

### **BESIII** at **BEPC II**



#### Symmetric electron-positron collider BEPC II

- Energy range:  $\sqrt{s} = 2.0-4.6$  GeV
- Design luminosity achieved:  $1 \times 10^{33}$  cm<sup>-2</sup>s<sup>-1</sup> (at  $\psi(3770)$ )
- Energy spread: ~5x10<sup>-4</sup>
- Operating since March 2008

#### The **BESIII** Detector

**RPC Muon Detector** 8 layers (end caps), 9 layers (barrel)  $\delta R_{\phi} = 1.4 - 1.7 \,\mathrm{cm}$ 

Superconducting Solenoid (1 T)

Electromagnetic Csl(Tl) Calorimeter  $\sigma_E/E < 2.5\%/\sqrt{E}$  $\sigma_{z,\phi} = 0.5 - 0.7 \,\mathrm{cm}/\sqrt{E}$ 

Time of Flight System

 $\sigma_t = 90 \, \mathrm{ps}$  (barrel)  $\sigma_t = 110 \, \mathrm{ps}$  (end caps)

Drift Chamber  $\sim$   $\sigma_{(dE/dx)} = 6\%$  $\sigma_{p_t}/p_t = 0.5\%$ 

### **Data Samples**

From 2009 to 2014/15:

- 1.3x10<sup>9</sup> J/ψ
- $5x10^8 \psi(2S)$
- 2.9 fb<sup>-1</sup>at ψ(3770)
- 0.5 fb<sup>-1</sup>at ψ(4040)
- 2.3 fb<sup>-1</sup>at 4230 / 4260 MeV
- 0.5 fb<sup>-1</sup>at 4360 MeV
- 0.5 fb<sup>-1</sup>at 4600 MeV
- 1 fb<sup>-1</sup> at  $\psi$ (4415)
- 0.1fb<sup>-1</sup> at 4470 / 4530MeV
- 0.04 fb<sup>-1</sup>around  $\Lambda_c$  threshold
- 1 fb<sup>-1</sup> at 4420 MeV
- R scan:
  - ~0.5 fb<sup>-1</sup> at 2-3 GeV, 19 points
  - ~0.8 fb<sup>-1</sup> at 3.85-4.59 GeV, 104 points
- 24 pb<sup>-1</sup> at 3554 MeV ( $\tau$  mass measurment)
- 0.5 fb<sup>-1</sup> at 4100-4400 MeV



#### Light Meson Spectrum

Additional color-less states: Color-less  $q\bar{q}$  states (q = u, d, s) Multipletts of  $q\bar{q}$  mesons with same J<sup>PC</sup> • Glueballs: gg, ggg • Hybrids: qqg Tetraquarks: (qq)(qq) 3000 Ð 2500 m/MeV2000  $1^{-+} 0^{+-} 2^{+-}$ 1500



 $3^{-+}$ 

#### Enhancement at pp Threshold

- Enhancement at pp
   threshold observed in J/ψ → γpp
   by BESII (2003) and confirmed by CLEOc (2010)
- Enhancement not observed in related channel:  $Y(1S) \rightarrow \gamma p \bar{p}$
- Nature still unclear
  - pp bound state (baryonium), multiquark state, FSI effect ?





#### Radiative J/ $\psi$ and $\psi$ ' Decays

Partial Wave Analysis of  $J/\psi \rightarrow \gamma p \bar{p}$  and  $\psi' \rightarrow \gamma p \bar{p}$ in the mass region  $m_{_{D\bar{D}}} < 2.2~GeV/c^2$ 

 $J/\psi \rightarrow \gamma p \bar{p}$ : Significant contributions of X(p \bar{p}),  $f_2(1920)$ ,  $f_0(2100)$ , and non-resonant  $0^{++}$  pp wave

 $\rightarrow$  Structure at threshold X(pp̄): J<sup>PC</sup> = 0<sup>-+</sup> Breit-Wigner parameterization:

 $M = 1832^{+19}_{-5}$ (stat)  $^{+18}_{-17}$ (syst)  $\pm 19$ (model)  $MeV/c^2$  $\Gamma = 13 \pm 39$ (stat)  $^{+10}_{-13}$ (syst)  $\pm 4$ (model) MeV/c<sup>2</sup>  $BR_{[J/\psi \to \gamma X] \times BR[X \to pp]} = (9.0^{+0.4}_{-1.1} (stat)^{+1.5}_{-5.0} (syst) \pm 2.3 (model)) \times 10^{-5}$ 

 $\psi' \rightarrow \gamma p \bar{p}$ : X(p \bar{p}) production is suppressed by a factor of ~20 compared to production in  $J/\psi \rightarrow \gamma p \bar{p}$ 



10

**Ö**.0

0.1

0.2 $M_{p\overline{p}}-2m_p(GeV/c^2)$ 

**B€S**III



225M J/ψ

 $X(p\overline{p})$ 

#### Hadronic J/ψ Decays

Study of  $J/\psi \rightarrow \omega p\bar{p}$  and  $J/\psi \rightarrow \Phi p\bar{p}$  may shed further light on the nature of  $X(p\bar{p})$ 

 $J/\psi \rightarrow \omega p \bar{p}$ 

 $\begin{array}{l} \mathsf{B}(\mathsf{J}/\psi \rightarrow \omega \mathsf{X}(\mathsf{p}\overline{\mathsf{p}}) \rightarrow \omega \mathsf{p}\overline{\mathsf{p}}) \\ < 3.7 \mathrm{x} 10^{-6} \ (95\% \ \mathsf{CL}) \end{array}$ 

>10x suppressed compared to  $J/\psi \rightarrow \gamma X(p\bar{p}) \rightarrow \gamma p\bar{p}$ 





#### BESIII, Phys. Rev. Lett. 106, 072002 (2011)

#### X(1835) previously observed at BES and BESII

X(1835) in  $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ 

- Nature unclear, interpretations include glueball, p
  p bound state, excited η meson
- Confirmed at BESIII with two additional structures above 2 GeV/c<sup>2</sup>

| Resonance   | $M({ m MeV}/c^2)$ | $\Gamma({ m MeV}/c^2)$ | -   |
|-------------|-------------------|------------------------|-----|
| $f_1(1510)$ | $1522.7 \pm 5.0$  | $48 \pm 11$            | >5. |
| X(1835)     | $1836.5 \pm 3.0$  | $190.1 \pm 9.0$        | >20 |
| X(2120)     | $2122.4 \pm 6.7$  | $83 \pm 16$            | >7. |
| X(2370)     | $2376.3 \pm 8.7$  | 83 ± 17                | >6  |

- X(1835) angular distribution consistent with pseudoscalar, but other spin-parity assignments not excluded
- → Systematic studies of X(1835) ongoing at BESIII (additional decay modes, production mechanisms, ...)



### New: Connection of X(pp̄) and X(1835)

- If X(1835) couples to pp
  , the lineshape would be affected at the pp
  threshold
- Update of  $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$  analysis with 1.09x10<sup>9</sup>  $J/\psi$  events
  - Using  $\eta' \rightarrow \eta \pi^+ \pi^-$  and  $\eta \rightarrow \gamma \pi^+ \pi^-$
  - X(1835), X(2120), X(2370) and  $\eta_c$  signals; structure at ~2600 MeV/c^2



Drop of the X(1835) lineshape at the pp threshold !

### New: Connection of X(pp̄) and X(1835)

preliminary





Parameterization with single Breit-Wigner fails to describe the data

#### Model 1:

Flatte lineshape (strong coupling to pp̄) and one additional, narrow Breit-Wigner at ~1920 MeV/c<sup>2</sup>

Model 1 and 2 yield almost equal fit quality Both fits suggest two resonances:

- one broad resonance below threshold
- one narrow state very close to  $p \overline{p}$  threshold



#### Model 2:

Coherent sum of X(1835) Breit-Wigner and one additional, narrow Breit-Wigner at ~1870 MeV/c<sup>2</sup>

## X(1835) in $J/\psi \rightarrow \gamma K^0_S K^0_S \eta$

- Structure in invariant K<sub>S</sub>K<sub>S</sub>η mass at ~1.85 GeV/c<sup>2</sup>
- Strong correlation with enhancement at K<sub>S</sub>K<sub>S</sub> mass threshold (interpreted as f<sub>0</sub>(980))
- Structure in K<sub>S</sub>K<sub>S</sub>η is enhanced for m(K<sub>S</sub>K<sub>S</sub>) < 1.1 GeV/c<sup>2</sup>



BESIII, Phys. Rev. Lett. 115, 091803 (2015)

- Partial wave analysis for m(K<sub>S</sub>K<sub>S</sub>) < 1.1 GeV/c<sup>2</sup> and m(K<sub>S</sub>K<sub>S</sub>η) < 2.8 GeV/c<sup>2</sup>
- Two resonant pseudoscalar components (Breit-Wigner parameterization) required in best fit hypothesis

X(1835) in  $J/\psi \rightarrow \gamma K^0_{\rm s} K^0_{\rm s} \eta$ 

 $X(1835) \to f_0(980)\eta \text{ (> 12.9\sigma)}$  $m = 1844 \pm 19^{+16}_{-25} \text{ MeV}/c^2$  $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}$ 

 $X(1560) \to f_0(980)\eta \quad (>8.9\sigma)$   $m = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$  $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}$ 



Values consistent with those of  $\eta(1405) / \eta(1475)$  at ~2 $\sigma$  $\rightarrow$  needs further investigations

#### Further Observations at pp Threshold



#### Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- Radiative J/ψ decays into two pseudoscalar mesons (ππ, ηη, KK̄)
  - Search for scalar and tensor glueballs (predicted at ~1.5 to ~2 GeV/c<sup>2</sup>)
  - Many broad and overlapping resonances, many open channels
    - $\rightarrow$  complex structure, parameterization challenging
- $\pi^0\pi^0$  system: Model Independent Partial Wave Analysis



BESIII, Phys.Rev. D92 052003 (2015)

# Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$



- Only 0<sup>++</sup> and 2<sup>++</sup> contribute significantly
- Ambiguities may be resolved in a model-dependent fit

Model independent approach is under investigation for other systems (e.g.  $\eta\eta$ ,  $K\overline{K}$ )  $\rightarrow$  improves our understanding of the nature of the observed resonances

### Partial Wave Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

- Spin-exotic 1<sup>-+</sup> states
  - π<sub>1</sub>(1400) → ηπ, ρπ (?) [GAMS, KEK, Crystal Barrel, E852]
  - −  $\pi_1(1600) \rightarrow \eta' \pi$ ,  $f_1 \eta'$ ,  $b_1 \pi$  [VES, E852, COMPASS, CLEOc]
    - recently seen in  $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$  by CLEOc
- a<sub>0</sub>(980)
  - discovered four decades ago, nature still not resolved
  - −  $a_0(980) \rightarrow \eta' \pi$  only observed recently by CLEOc
  - −  $a_0(980) \rightarrow \eta \pi$  coupling poorly known
    - various experiments: 0.15 +/- 0.2 <  $g_{\eta\pi}^2$  [GeV<sup>2</sup>] < 0.36 +/- 0.04
- BESIII:  $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ 
  - about 40M  $\chi_{c1}$  produced from  $\psi' \rightarrow \gamma \chi_{c1}$
  - clean environment to search for 1<sup>-+</sup> states
  - determine  $a_0(980)$  couplings  $g_{\eta\pi}^2$  and  $g_{\eta^{\prime}\pi}^2$



#### Partial Wave Analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$



Clear evidence for  $a_2(1700)$ 

Upper limits on  $B(\chi_{c1} \rightarrow \pi_1 \pi \rightarrow \eta \pi^+ \pi^-)$ for 1<sup>-+</sup>  $\eta \pi$  wave

 $\begin{array}{ll} \pi_1(1400): &< 0.048 \; (90\% \; \text{CL}) \\ \pi_1(1600): &< 0.016 \; (90\% \; \text{CL}) \\ \pi_1(2015): &< 0.008 \; (90\% \; \text{CL}) \end{array}$ 

#### Measurement of $a_0(980)$ couplings

| Experiment                           | BESIII                          | CLEO-c[1]         |
|--------------------------------------|---------------------------------|-------------------|
| $m_0 \; [{\rm GeV}/c^2]$             | $995.5 {\pm} 2.4 {\pm} 6.5$     | $998{\pm}16$      |
| $g_{\eta\pi}^2~[{\rm GeV}/c^2]$      | $0.368 {\pm} 0.003 {\pm} 0.013$ | $0.36 {\pm} 0.04$ |
| $g^2_{KK}/g^2_{\eta\pi}$             | $0.93{\pm}0.03{\pm}0.09$        | $0.87 {\pm} 0.15$ |
| $g_{\eta^\prime\pi}^2/g_{\eta\pi}^2$ | $0.49{\pm}0.05{\pm}0.10$        | $0.00 {\pm} 0.17$ |

Deviation from 0

#### **Conclusions and Outlook**

- BESIII is successfully operating since 2008
  - World's largest data sample at the J/ $\psi$  and  $\psi$ ' resonance recorded
  - Clean and rich source for light hadron production
- Systematic studies to understand X(1835) and other structures observed near pp
   threshold
  - X(1835) nature unclear:  $p\overline{p}$  bound state, glueball, excited  $\eta$  meson?
- Sophisticated Partial Wave Analyses well underway
  - $J/\psi \rightarrow \gamma \pi^0 \pi^0$ : model independent approach  $\rightarrow$  rich structure in  $\pi \pi$ 
    - future: couple with other channels to reveal nature of observed resonances
  - −  $\chi_{c1}$  →  $\eta\pi^+\pi^-$ : further knowledge on exotic 1<sup>-+</sup> states,  $a_0(980)$  and  $a_2(1700)$

Exciting times in light hadron spectroscopy with many important results and still more to come!

# The BESIII Collaboration **BESIII**

