Charm Physics Results at BESIII

Zhang Yu

On Behalf of the BESIII Collaboration

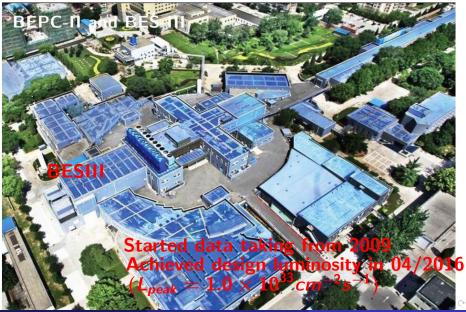
University of Chinese Academy of Sciences

zhangyu213@mails.ucas.ac.cn

DIS2016, DESY, 2016.04

æ

Overview

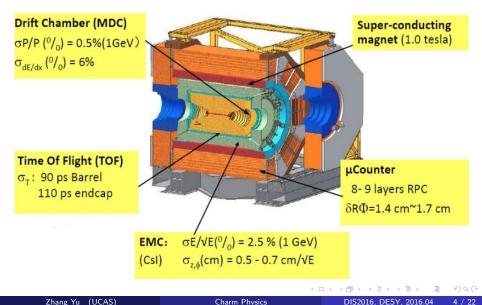

Introduction

- BEPC-II and BESIII
- Charm Production and Charm Physics
- Analysis Technique

Recent Charm Results

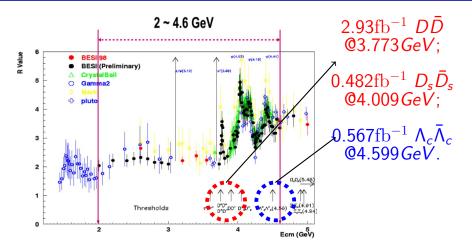
- Measurement of Hadronic Λ_c^+ Branching Fractions
- Measurement of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ Branching Fraction
- Observation of $D^+ \to \omega \pi^+$ and Evidence for $D^0 \to \omega \pi^0$
- Measurement of $D^+ o \omega e^+ \nu_e$ and Search for $D^+ o \phi e^+ \nu_e$
- Analysis of $D^0
 ightarrow (K^-/\pi^-) e^+
 u_e$
- Decay Dynamics and CP Asymetry in $D^0 o K^0_L e^+
 u_e$
- Measurement of the branching fractions of $D_s^+ \to \eta' X$ and $D_s^+ \to \eta' \rho^+$ in $e^+e^- \to D_s^+ D_s^-$
- Summary

Beijing Electron Positron Collider (BEPC-II)

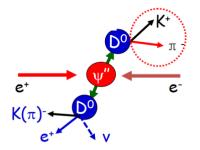


Zhang Yu (UCAS)

Charm Physics


DIS2016, DESY, 2016.04

BESIII


Zhang Yu (UCAS) DIS2016, DESY, 2016.04

Charm Production and Charm Physics

(Semi)leptonic and hadronic decays; Decay constant and formfactors; CKM matrix: V_{cd} , V_{cs} ; Mixing and CP violation; Rare and forbidden decays

Analysis Technique

Single Tag(ST)
$$M_{BC} = \sqrt{E_{beam}^2/c^2 - |\mathbf{p}_D^2|}$$

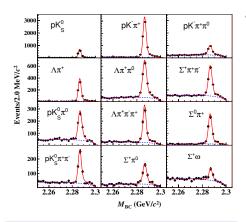
Ouble Tag(DT) for (semi)leptonic decays: $U_{miss} = E_{miss} - c|\mathbf{p}_{miss}|$

3
$$\mathcal{B} = rac{N_{sig}}{N_{tag} imes \epsilon_{sig} / \epsilon_{tag,sig}}$$

Tag side:

Tag the charmed meson or baryon flavor via hadronic decays with large branching fractions, thus could suppress background effectively;

Signal side:

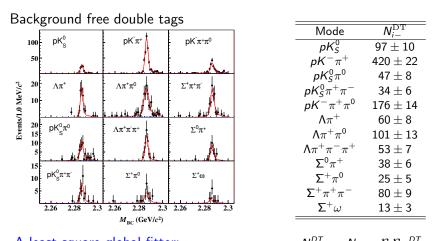

(Semi)leptonic charmed decays: reconstruct the "missing" neutrino;

Hadronic decays: fully reconstruct the final states.

Zhang Yu (UCAS)

Charm Physics

Measurement of Hadronic Λ_c^+ Branching FractionsSingle Tag Λ_c^+ Events[PhysRevLett.116.052001]



Dominated by $pK^-\pi^+$

 $\sim 1.5 \times 10^4$ single tag events

Mode	N ST
pK ⁰ _S	1243 ± 37
m m m m m m m m m m m m m	6308 ± 88
$pK_S^0\pi^0$	558 ± 33
$pK_S^0\pi^+\pi^-$	485 ± 29
m m m m m m m m m m m m m	1849 ± 71
$\Lambda\pi^+$	706 ± 27
$\Lambda \pi^+ \pi^0$	1497 ± 52
$\Lambda \pi^+ \pi^- \pi^+$	609 ± 31
$\Sigma^0 \pi^+$	522 ± 27
$\Sigma^+\pi^0$	309 ± 24
$\Sigma^+\pi^+\pi^-$	1156 ± 49
$\Sigma^+ \omega$	157 ± 22

Measurement of Hadronic Λ_c^+ Branching Fractions [PhysRevLett.116.052001]

A least square global fitter: $N_{i+j-}^{DT} = N_{\Lambda_c^+\Lambda_c^-} \mathcal{B}_i \mathcal{B}_j \epsilon_{i+j-}^{DT}$ simultaneous fit to all the tag modes, while constraining the total $\Lambda_c \bar{\Lambda}_c$ pair number, taking into account the correlations.

Zhang Yu (UCAS)

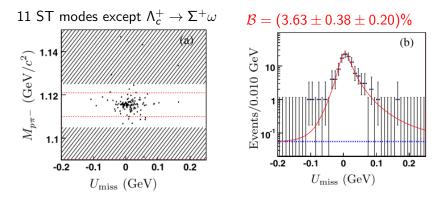
Charm Physics

DIS2016, DESY, 2016.04

Measurement of Hadronic Λ_c^+ Branching FractionsImproved Branching Fractions(PhysRevLett.116.052001)

Mode	This work (%)	PDG (%)	BELLE (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$ ho K^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	(PhysRevLett.113.042002)
$pK_S^{ar{0}}\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$ ho K^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	$\textbf{3.4} \pm \textbf{1.0}$	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	$\textbf{3.6} \pm \textbf{1.3}$	
$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	$\textbf{3.6} \pm \textbf{1.0}$	
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

9 Branching fraction for $pK^-\pi^+$ is consistent with that of PDG value;

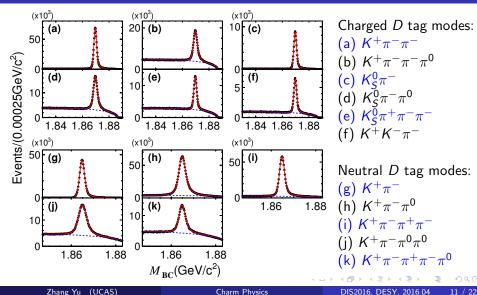

The BFs improve the precision of PDG value significantly.

Zhang Yu (UCAS)

Charm Physics

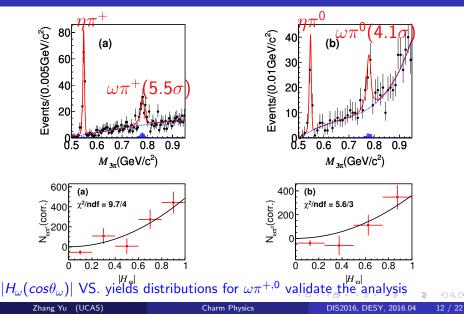
$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ Branching Fraction

PhysRevLett.115.221805



• $\mathcal{B}_{PDG2015} = (2.9 \pm 0.5)\%$, using $\mathcal{B}_{BELLE}(pK^{-}\pi^{+})$ as input;

2 The first absolute measurement;


③ A good test to non-perturbtive models and LQCD calculations.

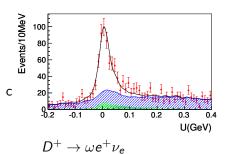
Observation of $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$ Fit to ST M_{BC} in Data

Zhang Yu (UCAS) DIS2016, DESY, 2016.04

Observation of $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$ [PhysRevLett.116.082001]

Observation of $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$ [PhysRevLett.116.082001]

Table: Summary of branching fraction measurements, and comparison with the previous CLEO-c measurements.


Mode	This work	Previous measurements
$D^+ o \omega \pi^+$	$2.79 \pm 0.57 \pm 0.16 imes 10^{-4}$	$< 3.4 imes 10^{-4}$ at 90% C.L.
$D^0 o \omega \pi^0$	$1.17\pm0.34\pm0.07\times10^{-4}$	$< 2.6 imes 10^{-4}$ at 90% C.L.
$D^+ o \eta \pi^+$	$3.07\pm 0.22\pm 0.13\times 10^{-3}$	$(3.53\pm0.21) imes10^{-3}$
$D^0 o \eta \pi^0$	$(0.65\pm0.09\pm0.04) imes10^{-3}$	$(0.68 \pm 0.07) imes 10^{-3}$

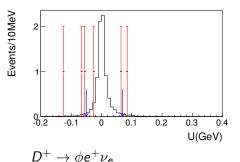
- **(**) Observation of $D^+ \rightarrow \omega \pi^+$ and a strong evidence for $D^0 \rightarrow \omega \pi^0$;
- (2) The $D^+ \to \eta \pi^+$ and $D^0 \to \eta \pi^0$ branching fractions are consistent with the PDG value;
- Improved understanding of U-spin and SU(3)-flavor symmetry breaking effects in D decays.

Zhang Yu (UCAS)

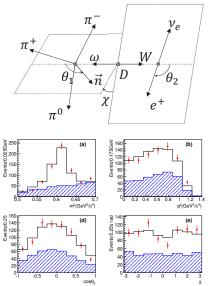
Zhang Yu (UCAS)

Analysis of $D^+ ightarrow (\omega, \phi) e^+ u$

data; peaking background; total background and Fit

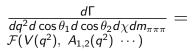

Dots:data; Arrow: signal region; Hist: signal MC.

DIS2016, DESY, 2016.04

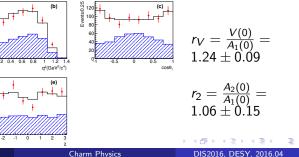

14 / 22

$ \begin{array}{c c} \omega e^+ \nu_e & (1.63 \pm 0.11 \pm 0.08) \times 10^{-3} & (1.82 \pm 0.18 \pm 0.07) \times 10^{-3} \\ \phi e^+ \nu_e & < 1.3 \times 10^{-5} \ (90\% \text{C.L.}) & < 9.0 \times 10^{-5} \ (90\% \text{C.L.}) \end{array} $	Mode	This work	CLEO-c
$\phi e^+ u_e < 1.3 imes 10^{-5} (90\% C.L.) < 9.0 imes 10^{-5} (90\% C.L.)$	$\omega e^+ \nu_e$	$(1.63\pm0.11\pm0.08) imes10^{-3}$	$(1.82\pm0.18\pm0.07) imes10^{-3}$
	$\phi e^+ \nu_e$	$< 1.3 imes 10^{-5}$ (90%C.L.)	$< 9.0 imes 10^{-5}$ (90%C.L.)

Charm Physics

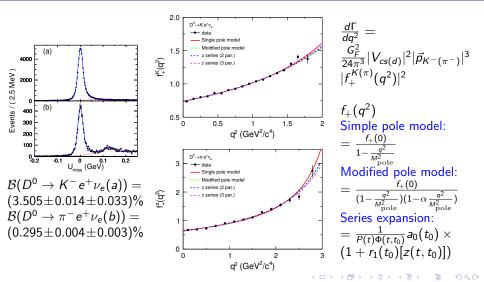


Analysis of $D^+ \rightarrow (\omega, \phi)e^+\nu$ Form Factor Measurement of $D^+ \rightarrow \omega e^+\nu_e$ Phys.Rev. D92 (2015) 7, 071101

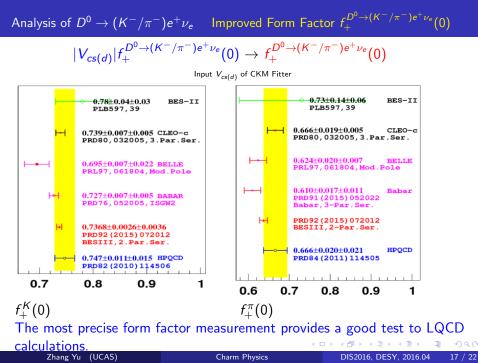


Zhang Yu

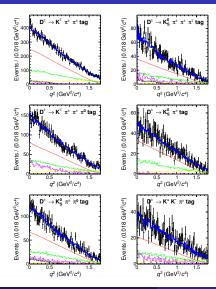
(UCAS)



A five-dimensional maximum likelihood fit is performed in the space of m^2 , q^2 , $\cos \theta_1$, $\cos \theta_2$ and χ .


Analysis of $D^0 o (K^-/\pi^-) e^+ u_e$ Branching Fraction and Form Factor Fit

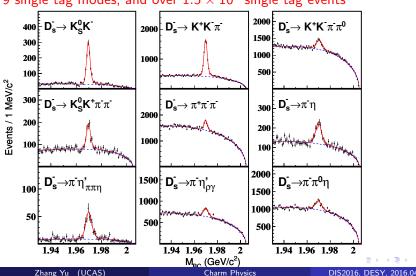
[Phys.Rev.D,92, 072012]



Zhang Yu (UCAS)

DIS2016, DESY, 2016.04

Decay Dynamics and CP Asymetry in $D^0 \rightarrow K_L^0 e^+ \nu_e$ The first measurement [Phys.Rev. D92 11, 112008]

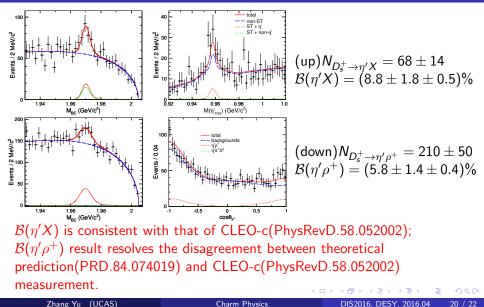

Red dashed: signal

② $|V_{cs}| =$ 0.975±0.008±0.015±0.025(with LQCD input $f_{+}^{K}(0)$), consistent with 0.986±0.016 in PDG

 \bigcirc ACP \equiv $\frac{\mathcal{B}(D^+ \to K_L e^+ \nu_e) - \mathcal{B}(D^- \to K_L e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L e^+ \nu_e) + \mathcal{B}(D^- \to K_L e^- \bar{\nu}_e)}$ $=(-0.59\pm 0.60\pm 1.48)\%$

Zhang Yu (UCAS)

Branching Fractions of $D_s^+ \to \eta' X$ and $D_s^+ \to \eta' \rho^+$ Fit to ST M_{BC}



9 single tag modes, and over 1.5×10^4 single tag events

Zhang Yu (UCAS)

DIS2016, DESY, 2016.04 19 / 22

Branching Fractions of $D_s^+ \to \eta' X$ and $D_s^+ \to \eta' \rho^+$

Zhang Yu (UCAS)

Charm Physics at *BESIII* Summary

Large charm data sets

- Form factor measurement in (semi)leptonic charm decays provide important test to LQCD calculations, CKM matrix unitary;
- Hadronic charmed meson and baryon decays improve understanding of non-perturbative QCD;
- The first $\Lambda_c \bar{\Lambda}_c$ data set at threshold allows absolute branching fraction measurement;
- **BESIII** will take more $D_s D_s^*$ data at 4.180GeV; this would benefit the understanding of physics related to D_s further.
- Other ongoing programs not covered in this talk: Searches for rare/forbidden decays, and quantum correlated analysis based on the world's largest $\psi(3770)$ data taken near it's nominal mass, find more on *BESIII* PUBLICATIONS

The End

Zhang Yu (UCAS)

Charm Physics

DIS2016, DESY, 2016.04 22

イロト イ団ト イヨト イヨト

2