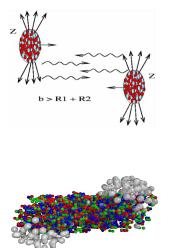
Vector meson photoproduction in ultra-peripheral p-Pb collisions measured using the ALICE detector

Jaroslav Adam On behalf of the ALICE Collaboration

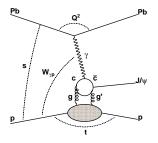
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague



April 11 - 15, 2016

DIS 2016

XXIV. International Workshop on Deep-Inelastic Scattering and Related Subjects


Ultra-peripheral collisions at the LHC

- The ultra-peripheral collision (UPC) is a collision at impact parameter greater than sum of nuclear radii *R*1 + *R*2
- Is mediated only by electromagnetic forces
- The electromagnetic field in UPC is described by flux of virtual photons (E. Fermi 1924)
- Generalization of virtual photons to relativistic case was done by Weizsäcker and Williams
- Intensity of the field is proportional to Z²
- The LHC works as a photon-hadron collider
- Study of saturation phenomena and nuclear gluon shadowing in γ_P and γ_{Pb} interactions

Photoproduction of J/ψ in photon-proton interactions

ALICE used p-Pb collisions, the lead-ion is most likely (~95%) the photon source

• Photon-proton cross section $\sigma(\gamma+p \rightarrow J/\psi+p)$ is measured as a function of photon-proton center-of-mass energy $W_{\gamma p}$


Kinematics is constrained as:

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} \exp(-y)$$

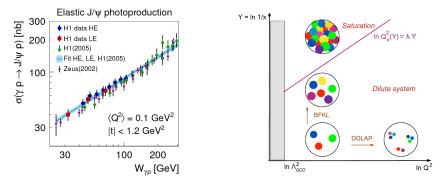
- Rapidity y of the J/ψ is measured along direction of proton beam of energy E_p
- LHC used both direction: y > 0 (y < 0) in p-Pb (Pb-p), yielding lower (higher) energy $W_{\gamma p}$

Calculations of the photon-proton cross section $\sigma(\gamma+p \rightarrow J/\psi+p)$

• High energy J/ψ production is modeled by the two-gluon exchange (left) or using the dipole approach (right)*

• Cross section in LO approximation is proportional to the square of the gluon distribution $xg(x, q^2)$ at the scale $q^2 = M_{J/\psi}^2/4$:

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}t}(\gamma\mathrm{p}
ightarrow J/\psi\mathrm{p})
ight|_{t=0} = rac{\Gamma_{ee}\pi^3 lpha_{\mathrm{s}}^2}{3M_{J/\psi} lpha_{\mathrm{em}}} \left[xg(x,q^2)
ight]^2$$

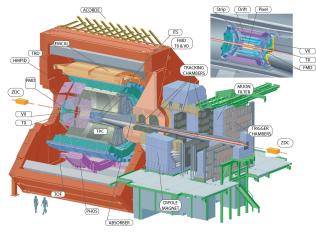

- Momentum fraction^{**} of probed gluons is $x = (M_{J/\psi}/W_{\gamma p})^2$
- In doing the experiment, each rapidity interval gives some $W_{\gamma p}$ and hence the data at different *x*

^{*} Diagrams: two-gluon exchange: J. High Energy Phys. 11 (2013) 085, dipole approach: Phys. Rev. D 74, 074016 (2006)

^{**}Actually there are two gluons at different momentum fractions $x' \ll x \ll 1$ and the cross section is in fact proportional to the *skewed* gluon distribution. It is dealt by the models on how to transform the diagonal distribution at x to the skewed distribution at $x_{1,2} = x \pm \xi$.

Gluon dynamics at small-x probed by J/ψ photoproduction

• Cross section at higher $W_{\gamma p}$ probes gluons at smaller x

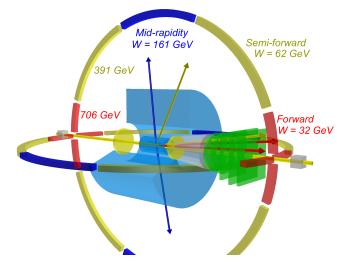

- Steady growth of the cross section $\sigma \propto W_{\gamma\rho}^{\delta}$ (HERA) indicates linear evolution with $Y = \ln 1/x$
- The gluon density is expected to saturate at small Bjorken-x
- Expected saturation should suppress the growth of the cross section beyond certain energy
- Finding the $W_{\gamma p}$ for onset of saturation is important experimental task

Jaroslav Adam (ALICE experiment)

Vector meson photoproduction in p-Pb

H1: Eur.Phys.J. C73, 2466 (2013), diagram: E. Iancu, CERN-2014-003.197

The ALICE experiment (A Large Ion Collider Experiment)



- Central detectors
 - Tracking in ITS+TPC
 - ► Acceptance |η| < 0.9</p>
 - Trigger from SPD and TOF
- Muon spectrometer
 - ► -4.0 < η < -2.5</p>
 - Tracking (MWPC), trigger (RPC)

- VZERO scintillator arrays: VZERO-C (-3.7 < η < -1.7) on the muon arm side and VZERO-A (2.8 < η < 5.1) opposite to the muon arm
- Zero Degree Calorimeters (ZDC): detection of very forward neutrons ($|\eta| > 8.8$) and protons (6.5 < $|\eta| < 7.5$ and -9.7° < $\phi < 9.7$ °)

ALICE measurements of exclusive $J/\psi \rightarrow l^+l^-$ in p-Pb UPC

- Just two tracks in an otherwise empty detector, combination of forward and central tracking
- Different laboratory rapidity y intervals, energy $W_{\gamma p}^2 = 2E_p M_{J/\psi} \exp(-y)$

• Wider range in $W_{\gamma p}$ than any previous experiment, top energy two times larger than at HERA

Results from forward rapidity in this talk, other intervals are being finalized for publication

Signal extraction for J/ψ in $\gamma p \rightarrow J/\psi p$

- Events within J/ψ mass peak are still a mixture of elastic, inelastic and dissociative production of the J/ψ and $\gamma\gamma \rightarrow \mu^+\mu^-$
- Templates to fit the p_T distribution, color notation (

Two photon production $\gamma\gamma o \mu^+\mu^-$

► Soft component of the *p*_T distribution, created by STARLIGHT^{*}, folded by full detector simulation

Coherent γ -Pb interactions

- Part of the soft component, contributes to forward Pb-p
- STARLIGHT was normalized to ALICE measurement in Pb-Pb, folded by detector simulation

Exclusive $\gamma + p \rightarrow J/\psi + p$

- Process of interest, middle part of the p_T distribution
- Obtained using STARLIGHT + folding by simulation

Non-exclusive J/ψ and $\gamma\gamma \rightarrow \mu^+\mu^-$

- Process of proton dissociation or inelastic production, hard component of p_T distribution
- Taken from the data, increased energy deposition in VZERO or in ZDC in the direction of proton beam

^{*} Phys.Rev. C60, 014903 (1999), hep-ph/9902259, https://starlight.hepforge.org/

Fine tuning of STARLIGHT template of exclusive $\gamma + p \rightarrow J/\psi + p$

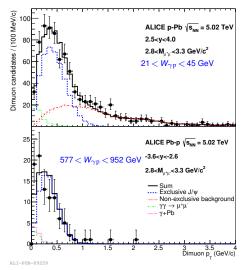
• Shape of p_T distribution is expected to take the form

$$\frac{\mathrm{d}N}{\mathrm{d}p_T} = A \cdot p_T \exp(-b \cdot p_T^2)$$

• The slope parameter b depends on the energy $W_{\gamma p}$ as*

 $b(W_{\gamma p}) = b_0 + 4\alpha' \ln(W_{\gamma p}/W_0)$

- STARLIGHT uses a constant b
- Special MC sample with *b* set in STARLIGHT for the energy at forward Pb-p was used for the p_T fit


^{*} Eur. Phys. J. C 46, 585 (2006)

Fit to the p_T distribution in the forward rapidity

- Extraction of signal of exclusive J/ψ in p-Pb
- Model (black line) as a sum of the templates:

```
Exclusive J/\psi in \gamma p
Elastic \gamma \gamma \rightarrow \mu^+ \mu^-
Coherent \gamma-Pb interactions
Non-exclusive J/\psi and \gamma \gamma \rightarrow \mu^+ \mu^-
```

- Fit using the model provides the number of J/ψ in $\gamma p \rightarrow J/\psi p$
- Normalization is free for J/ ψ in γ p and non-exclusive J/ ψ
- Upper bound for $\gamma\gamma \rightarrow \mu^+\mu^-$ from fit to invariant mass
- Coherent contribution is fixed using the measured cross section in Pb-Pb

PRL 113 (2014) 232504

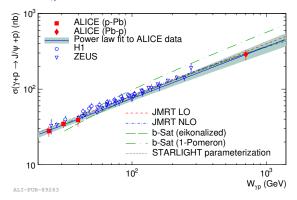
Jaroslav Adam (ALICE experiment)

Experimental cross section of exclusive J/ψ photoproduction in p-Pb

• Differential cross section $\frac{d\sigma}{dv}(p + Pb)$ is measured to get the cross section of $\gamma p \rightarrow J/\psi p$

$$rac{\mathrm{d}\sigma}{\mathrm{d}y} = rac{N_{J/\psi}^{\mathrm{exc}}}{arepsilon_{J/\psi}\cdot\mathcal{B}\cdot\mathcal{L}}\cdotrac{1}{\Delta y}$$

• $N_{J/\psi}^{exc} = \frac{N_{J/\psi}}{1+f_D}$ = yield of exclusive J/ψ


- ▶ $N_{J/\psi}$ = number of elastic J/ψ from the fits to the p_T distribution
- f_D : feed-down from $\psi' \rightarrow J/\psi + X$, follows from ratio of cross sections and efficiencies of direct J/ψ and J/ψ from ψ' , effect of ~10%
- Case of forward Pb-p: $N_{J/\psi}^{exc}$ by event counting, subtraction of the $\gamma\gamma$, γ Pb and f_D components
- $\varepsilon_{J/\psi}$ = correction for detector acceptance and efficiency
- \mathcal{B} = branching ratio of $J/\psi \rightarrow \mu^+\mu^-$ (PDG)
- \mathcal{L} = luminosity of the data sample
- Δy = width of the rapidity bin
- Photon-proton cross sections is related via the photon spectrum dN_γ/dk (distribution of photons carrying a momentum k) as

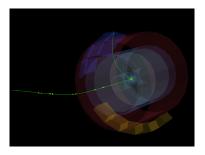
$$rac{\mathrm{d}\sigma}{\mathrm{d}y}(\mathsf{p}+\mathsf{Pb}
ightarrow\mathsf{p}+\mathsf{Pb}+J/\psi)=krac{\mathrm{d}N_{\gamma}}{\mathrm{d}k}\sigma(\gamma+\mathrm{p}
ightarrow J/\psi+\mathrm{p})$$

- The average photon flux has been calculated from STARLIGHT
- Procedure is based on Weizsäcker-Williams method in impact parameter space

ALICE cross section of exclusive J/ψ photoproduction off protons

- Lower energies by forward p-Pb (3 bins), high energy by forward Pb-p
- A fit by power law $\sigma \propto W_{\gamma p}^{\delta}$ to the cross section as a function of energy $W_{\gamma p}$

- Power-law fit to ALICE data alone gives $\delta_{ALICE} = 0.68 \pm 0.06$
- Fits to HERA data give $\delta_{\rm H1} = 0.67 \pm 0.03$ and $\delta_{\rm ZEUS} = 0.69 \pm 0.04$, ALICE is compatible
- Models based on VDM, standard pQCD (LO and NLO like) and including saturation describe ALICE data

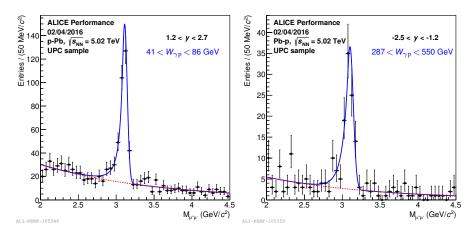

ALICE: PRL 113 (2014) 232504, H1: Eur.Phys.J. C73, 2466 (2013), ZEUS: Eur. Phys. J. C 24, 345 (2002) JMRT: J. High Energy Phys. 11 (2013) 085, b-Sat: Phys. Rev. D 74, 074016 (2006), arXiv:1211.4831 (1-Pomeron)


Jaroslav Adam (ALICE experiment)

Vector meson photoproduction in p-Pb

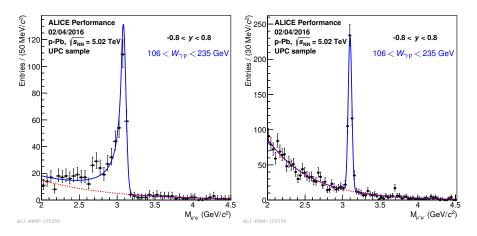
Data from semi-forward and mid-rapidity intervals

- Results are in final stages of paper preparation
- These new data will cover HERA range and also provide a new measurement beyond HERA energies



- Semi-forward rapidity
 - One muon in muon arm, one in central barrel
 - J/ψ rapidity 1.2 < |y| < 2.7</p>
 - *W*_{γρ} ∈ [41, 86] GeV (p-Pb) and [287, 550] (Pb-p)

- Mid-rapidity
 - Both muons or electrons in central barrel
 - ► J/ψ rapidity |y| < 0.8</p>
 - *W*_{γp} ∈ [106, 235] GeV (p-Pb and Pb-p)


Invariant mass of selected candidates in semi-forward rapidity

- Left: p-Pb at positive J/ψ rapidity, right: Pb-p at negative rapidity
- Clear signal of J/ψ , fit by Crystal Ball* and exponential for $\gamma\gamma \rightarrow \mu^+\mu^-$
- Parameters of the fit are compatible with MC expectations

^{*} J. Gaiser, SLAC-R-255 (1982)

Invariant mass at mid-rapidity

- Common sample of p-Pb and Pb-p thanks to symmetry around y = 0
- Left: dielectron channel, right: dimuon channel
- Fit by Crystal Ball for J/ψ and exponential for $\gamma\gamma \rightarrow e^+e^-$ or $\gamma\gamma \rightarrow \mu^+\mu^-$

Conclusions

- ALICE has measured exclusive photoproduction of J/ψ beyond energies achieved at HERA
- In Run1 data, no significant change in behavior of gluon density going from HERA to LHC energy
- Large kinematics coverage of a single experiment (combination of ALICE forward and central tracking)
- Update by semi-forward and mid-rapidity intervals is in final stages of paper preparation
- New LHC p-Pb run this year
 - \blacktriangleright With 8 TeV, precision measurement over 30 GeV $\lesssim W_{\gamma p} \lesssim$ 1300 GeV will be possible
 - Top energy is almost two times higher than in Run1
 - ALICE has new very forward (5.5 $< |\eta| <$ 7.5) scintillators for stronger veto to non-UPC events
 - Cleaner sample, more luminosity and higher photon-proton energies
- Stay tuned!