Azimuthal distributions in unpolarized SIDIS

H. Avakian (JLab), N. Harrison (JLab), K. Joo (Uconn)

DIS 2016, April 12, 2016

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

11 - 15 April 2016 DESY Hamburg, Germany

Outline

- Motivation
- •The Experiment
- Analysis
 - •event selection & binning
 - acceptance studies
 - radiative corrections
- Results
- •Comparison with higher energies
- Summary

SIDIS kinematical plane

$$\sigma = \sigma_{UU} + \sigma_{UU}^{\cos\phi} \cos\phi + \sigma_{UU}^{\cos 2\phi} \cos 2\phi + \lambda \sigma_{LU}^{\sin\phi} \sin\phi + \dots$$

SIDIS ($\gamma^* p \rightarrow \pi X$) : k_T-dependences

HT effects as background: Boer-Mulders distribution

Azimuthal distributions in SIDIS

Large cos modulations observed by EMC were reproduced in electroproduction of hadrons in SIDIS with unpolarized targets at COMPASS and HERMES

Jefferson Lab

Model predictions for $cos\phi$

 $F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2 \varepsilon (1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h}$

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right]$$

SIDIS cross-section

Expanding the contraction and integrating over ψ and the beam polarization, the cross-section for an unpolarized target can be written as $\frac{d^5\sigma}{dx \ dQ^2 \ dz \ d\phi_h \ dP_{h\perp}^2} =
\frac{2\pi\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) (F_{UU,T} + \epsilon F_{UU,L}) \left\{1 + \frac{\sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi_h}}{(F_{UU,T} + \epsilon F_{UU,L})} \cos\phi_h + \frac{\epsilon F_{UU}^{\cos2\phi_h}}{(F_{UU,T} + \epsilon F_{UU,L})} \cos 2\phi_h\right\}$ According the the factorization theorem, structure functions can, in the Bjorken
Bjorken Limit: $Q^2 \to \infty$

limit, be written as convolutions of TMDs and FFs $F = \sum \text{TMD} \otimes \text{FF}$

fixed borker Limit. $Q^{2} \rightarrow \infty$ $2P \cdot q \rightarrow \infty$ $P \cdot P_{h} \rightarrow \infty$ $x = Q^{2}/2P \cdot q$ $z = P \cdot P_{h}/P \cdot q$

CLAS: e1f data set

TOF Scintillators

- Two 0.4 GeV linear accelerators.

- Nine recirculation arcs for five loops around the track.

- Continuous, polarized electron beam up to 6 GeV delivered simultaneously to 3 experimental halls.

- High luminosity of 0.5 x 10^{34} (cm² s)⁻¹

- E1-f run: 5.498 GeV electron beam with ~75% polarization (averaged over for this analysis); unpolarized liquid hydrogen target; about 2 billion events; broad and comparable kinematic range for two channels:

- Electromagnetic Calorimeter (EC) and Čerenkov Counter (CC) used in electron identification.

- Drift Chamber (DC) (3 regions) and time of flight Scintillators (SC) record position and timing information for each charged track.

- Torus magnet creates toroidal magnetic field which causes charged tracks to curve while preserving the ϕ_{lab} angle.

SIDIS Cuts and Binning

The DIS region is defined as $Q^2 > 1.0 \text{ GeV}^2$ and W > 2.05 GeV.

Simulation

- 1B SIDIS events are generated with a PYTHIA based event generator.

- 3 different models were used to study model dependence.

- Generated events are put into a GEANT based Monte Carlo simulation of the CLAS detector (GSim).

- Smearing and inefficiencies are introduced to the simulation to make it more realistic.

- The simulated data is then "cooked", processed, and analyzed in the same way as the E1-f data set.

Above: Five generated events being reconstructed by GSim. Charged tracks are shown in red, neutral tracks in gray.

ϕ_h distributions - raw data (lowest x-Q² bin)

Radiative Corrections

- Radiative effects, such as the emission of a photon by the incoming or outgoing electron, can change all five SIDIS kinematic variables.

- Furthermore, exclusive events can enter into the SIDIS sample because of radiative effects ("exclusive tail").

- HAPRAD 2.0 is used to do radiative corrections.

- For a given $\sigma_{Born}(x, Q^2, z, P_{h\perp}^2, \phi_h)$ (obtained from a model), HAPRAD calculates $\sigma_{rad+tail}(x, Q^2, z, P_{h\perp}^2, \phi_h)$. The correction factor is then: $RC \ factor = \frac{\sigma_{rad+tail}(x, Q^2, z, P_{h\perp}^2, \phi_h)}{\sigma_{Born}(x, Q^2, z, P_{h\perp}^2, \phi_h)}$

- 3 different models were used to study model dependence.

Comparing with HERMES

 $F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h}$ $F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right]$ x=0.19,z=0.45,P_T=0.42 GeV 0.4 2<cos∳>*Q/f(y) HERMES-π-CLAS-π-0.2 CLAS data consistent with HERMES (27.5 GeV) 0 -0.2 CLAS-π+ HERMES-π+ -0.4 3 2 5 4 6 $Q^2 (GeV^2)^8$

Summary

□ The multiplicity, $\cos \varphi_h$ moment, and $\cos 2\varphi_h$ moment of the unpolarized SIDIS cross-section have been measured for both charged pion channels in a fully differential way with good statistics and well controlled systematics over a wide kinematic range.

The $\cos \varphi_h$ and $\cos 2\varphi_h$ modulations are significant, depend on flavor, and their understanding is important for interpretation of spin-azimuthal asymmetries

Comparison of azimuthal moments with HERMES, supports the higher twist nature of the $\cos\varphi_{h}$ moment (Cahn effect).

Support slides....

$\pi^+ P_{h\perp}^2$ vs z for each x-Q² bin

Effects of the shape of the generated ϕ distribution

Measurements of SS azimuthal asymmetries in SIDIS

$$\sigma = \sigma_{UU} (1 + P_B A_{LU}^{\sin \phi} \sin \phi + P_T A_{UL}^{\sin \phi} \sin \phi + P_T A_{UT}^{\sin \phi - \phi_S} \sin(\phi - \phi_S) + \dots)$$

Large $cos\phi$ and $sin\phi$ modulations have been observed in electroproduction of hadrons in SIDIS with polarized and unpolarized targets

$A_{UU}^{\cos\phi}$: From measurements to interpretation

Jefferson Lab