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Introduction 

  PDFs and TMDs to incorporate hadron structure 

 

  Employed at high energies 

 

  Polarized targets provide opportunities and challenges  

 

 

  At high energies x linked to scaling variables (e.g. x = Q2/2P.q) and convolutions 
of  transverse momenta are linked to azimuthal asymmetries (noncollinearity) 
requiring semi-inclusivity and/or polarization  

  Operator structure PDFs and TMDs can be embedded in a field theoretical 
framework via Operator Product Expansion (OPE), connecting Mellin moments 
and transverse moments of (TMD) PDFs with particular QCD matrix elements of 
operators (spin and twist expansion, gluonic pole matrix elements)  
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Matrix elements for TMDs 

  quark-quark 

 
 
  gluon-gluon 

 
  quark-gluon-quark 
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TMDs and color gauge invariance 

  Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

 
  Introduces path dependence for Φ(x,pT) 

 
 
 
  ‘Dominant’ paths: along lightcone connected at lightcone infinity (staples) 

 
  Reduces to ‘straight line’ for Φ(x) 
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u  Gauge links associated with dimension zero (not suppressed!) collinear An = A+ 
gluons, leading for TMD correlators to process-dependence: 

Non-universality because of process dependent gauge links 

Φij
q[C ](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ j (0)U[0,ξ ]

[C ] ψi (ξ ) P ξ .n=0

Φ[-] Φ[+] 

Time reversal 

TMD 

… A+ … 
… A+ … 
(resummation) 

   SIDIS  DY 

path dependent gauge link  

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003 
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Non-universality because of process dependent gauge links 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different paths. 
Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

   gg è H 

 in gg  è QQ  
Bomhof, M, Pijlman, 2006; Dominguez, Xiao, Yuan, 2011 



Matrix elements for TMDs 

  quark-quark 

 
  gluon-gluon 

 
 
  … and even single Wilson loop correlator 
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Quark correlator 

Unpolarized target 

 
  Vector polarized target 

 
 
  Surviving in collinear correlators Φ(x) and including flavor index  

  Note: be careful with use of h1T and non-traceless tensor with kT.ST  
since h1T is not a TMD of definite rank! 

 

 

8 

�[U ]
T (x, kT ) =

⇢
g

[U ]
1T (x, k2T )

kT ·ST

M

+ h

[U ]
1 (x, k2T )�5/ST + h

? [U ]
1T (x, k2T )

k

↵�
T ST↵���5

M

2

�
/P

2

�[U ]
L (x, kT ) =

⇢
SLg

[U ]
1 (x, k2T )�5 + SLh

? [U ]
1L (x, k2T )

�5/kT
M

�
/P

2

�[U ](x, kT ) =

⇢
f

[U ]
1 (x, k2T ) + i h

? [U ]
1 (x, k2T )

/kT
M

�
/P

2

f

q
1 (x) ⌘ q(x) g

q
1(x) = �q(x) h

q
1(x) = �q(x)



Definite rank TMDs 

  Expansion in constant tensors in transverse momentum space    
     

  … or traceless symmetric tensors (of definite rank)  

  Simple azimuthal behavior: 
    functions showing up in cos(mφ) or sin(mφ) asymmetries (wrt e.g. φT) 
 
  Simple Bessel transform to b-space (relevant for evolution):  

9 

gµ⌫T = gµ⌫ � P {µn⌫} ✏µ⌫T = ✏Pnµ⌫ = ✏�+µ⌫

kiT

kijT = kiT k
j
T � 1

2k
2
T gijT

kijkT = kiT k
j
T k

k
T � 1

4k
2
T

⇣
gijT kkT + gikT kjT + gjkT kiT

⌘
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Structure of quark (8) TMD PDFs in spin ½ target 

  8 TMDs F…(x,kT
2) 

  Integrated (collinear) correlator: only circled ones survive 
  Collinear functions are spin-spin correlations 
  TMDs also momentum-spin correlations (spin-orbit) including also       

T-odd (single-spin) functions (appearing in single-spin asymmetries) 
  Existence of T-odd functions because of gauge link dependence!  
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Structure of quark TMD PDFs in spin 1 target 
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QUARKS 
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⊥
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⊥

f1

g1 

h1
⊥
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⊥
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⊥
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⊥

X. Ji, PRD 49 (1994) 114; introduction of                    (PFF)  

Bacchetta & M, PRD 62 (2000) 114004; h1LT first introduced as T-odd PDF  
Hoodbhoy, Jaffe & Manohar, NP B312 (1988) 571: introduction of f1LL = b1 
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Gluon correlators 

Unpolarized target 

  Vector polarized target 
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Gluon correlators 

  Tensor polarized target 
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Structure of gluon TMD PDFs in spin 1 target 
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⊥
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Simplest color flow classes for quarks (in lower hadron) 
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�q ! q

q̄q ! �

h| (0)U [+]
[0,⇠]  (⇠)|i

h| (0)U [�]
[0,⇠]  (⇠)|i



Color flow and gauge-link 
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Hadron (+) 

Hadron (-) 

hard COLOR 

qg ! q

h|F (0)U [+]
[0,⇠] F (⇠)U [�]

[⇠,0]|i

qg ! qg

or 

h|F (0)U [+]
[0,⇠] F (⇠)U [+]

[⇠,0]U
(⇤)|i



Color flow classes for quarks (in lower hadron) 
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�q ! q qq ! qq

q̄q ! g or q̄q

gq ! gq

gq ! qq̄q ! �

qq ! qq gq ! gq

h| (0)U [+]
[0,⇠]  (⇠)|i

h| (0)U [�]
[0,⇠]  (⇠)|i



Color flow classes for quarks or diffractive (in lower hadron) 
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�q ! q qq ! qq

q̄q ! g or q̄q

gq ! gq

gq ! qq̄q ! �

qq ! qq gq ! gq

h| (0)U [+]
[0,⇠]  (⇠)|i

h| (0)U [�]
[0,⇠]  (⇠)|i

q(gg) ! q g(gg) ! g

h|U [+]
[0,⇠] U

[�]
[⇠,0]|i = h|U [⇤]|i



Color flow classes for gluons (in lower hadron) 
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�g ! g qg ! qg gg ! gg qg ! qg gg ! qq̄

gg ! H qg ! qg gg ! gg gg ! qq̄



Operator structure in collinear case (reminder) 

  Collinear functions and x-moments 

  Moments correspond to local matrix elements of operators that all have the 
same twist since dim(Dn) = 0 

  Moments are particularly useful because their anomalous dimensions can be 
rigorously calculated and these can be Mellin transformed into the splitting 
functions that govern the QCD evolution. 
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂ξ

n )N−1U[0,ξ ]
[n] ψ(ξ ) P

ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dξ
n )N−1ψ(ξ ) P

ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P

x = p.n  



Transverse moments à operator structure of TMD PDFs 

  Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy 
to Mellin moments consider transverse moments à role for quark-gluon m.e. 
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]iDT

αU[±∞,ξ ]ψ(ξ ) P ξ .n=0

dpT∫ pT
αΦ[U ](x, pT ;n) = !Φ∂

α (x)+CG
[U ]ΦG

α (x)

T-even  T-odd  

calculable  

T-even (gauge-invariant derivative)  

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-odd (soft-gluon or gluonic pole, ETQS m.e.)  

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

ΦA
α (x) = PV

dx1
x1

ΦF
nα (x − x1,x1 | x)∫

ΦG
α (x) = πΦF

nα (x,0 | x)

Efremov, Teryaev; Qiu, Sterman; 
Brodsky, Hwang, Schmidt; Boer, Teryaev; Bomhof, Pijlman, M 



  CG
[U] calculable gluonic pole factors (quarks) 

 

 
 
 
 
 

5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×⟨P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S⟩

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

Gluonic pole factors are calculable 

22 Buffing, Mukherjee, M, PRD88 (2013) 054027, ArXiv 1306.5897 

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 



Operator classification of TMDs according to rank 

factor TMD PDF RANK 
0 1 2 3 

1 
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!Φ
∂∂
(x)!Φ

∂
(x)Φ(x) !Φ

∂∂∂
(x)

!Φ{G∂},c (x)!ΦG ,c (x) !Φ{G∂∂},c (x)
!Φ{GG∂},c (x)!ΦGG ,c (x)
!ΦGGG ,c (x)

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

 
  Transverse moments to be used as coefficients in Φ(x,pT

2) 

Buffing, Mukherjee, M, PRD88 (2013) 054027, ArXiv 1306.5897 

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 



 
  Transverse moments to be used as coefficients in Φ(x,pT

2) 
  Trace terms involving        are responsible for f1(x) à f1(x,pT

2) 

Operator classification of TMDs (including trace terms) 
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@·@

factor TMD PDF RANK 
0 1 2 3 

1 Φ
∂∂
(x, pT

2 )Φ
∂
(x, pT

2 )Φ(x, pT
2 ) Φ

∂∂∂
(x, pT

2 )
Φ{G∂},c (x, pT

2 )ΦG ,c (x, pT
2 ) Φ{G∂∂},c (x, pT

2 )
Φ{GG∂},c (x, pT

2 )ΦGG ,c (x, pT
2 )

ΦGGG ,c (x, pT
2 )

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

Boer, Buffing, M, JHEP08 (2015) 053, arXiv:1503.03760 



Operator classification of quark TMDs (polarized nucleon) 

factor QUARK TMD RANK FOR VECTOR POL. (SPIN ½) HADRON 
0 1 2 3 

1 
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h1T
⊥[∂∂]

h1
⊥   f1T

⊥

f1   g1   h1 g1T   h1L
⊥

h1T
⊥[GG1]   h1T

⊥[GG2]

CG
[U ]

CGG ,c
[U ]

[∂∂] :  ψ∂∂ψ =Trc ∂∂ψψ"# $%

[GG  1] : Trc GGψψ"# $%

[GG  2] : Trc GG"# $%Trc ψψ"# $%

Three pretzelocities: 

Process dependence also for (T-even) pretzelocity,  

h1T
⊥[U ] = h1T

⊥[∂∂] +CGG ,1
[U ] h1T

⊥[GG1] +CGG ,2
[U ] h1T

⊥[GG2]

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 



 
  Transverse moments to be used as coefficients in Φ(x,pT

2) 
  Trace terms involving        are responsible for f1(x) à f1(x,pT

2) 
  Trace terms involving G.G are responsible for new functions (not necessarily 

new structures) 
  Trace terms affect pT width (note δΦG.G(x) = 0, etc. 

Operator classification of TMDs (including trace terms) 
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@·@factor TMD PDF RANK 
0 1 2 3 

1 !Φ
∂∂

!Φ
∂

!Φ
∂∂∂

!Φ{G∂},c
!ΦG ,c

!Φ{G∂∂},c

!Φ{GG∂},c
!ΦGG ,c

!ΦGGG ,c

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

δ !ΦG.G ,c

δ !Φ{G.∂},c
δ !Φ{G.G∂},c
δ !ΦG.GG ,c δ !Φ{G.GG∂},cδ !Φ{G.GG.∂},c

!Φ(x, pT
2 )

@·@



Operator classification of quark TMDs (including trace terms) 
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Process dependence in pT dependence of TMDs due to gluonic pole operators 
(e.g. affecting <pT

2>  
 
 
                                                    with δf1[GG c](x) = 0 f1

[U ](x, pT
2 ) = f1 + CGG ,c

[U ] δ f1
[GGc]

factor QUARK TMD RANK FOR VECTOR POL. (SPIN ½) HADRON 
0 1 2 3 

1 

… 

… 

h1T
⊥[∂∂]g1T

[∂]   h1L
⊥[∂]

h1T
⊥[GG1]   h1T

⊥[GG2]

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

h1
⊥[G ]   f1T

⊥[G ]

f1   g1   h1

δ f1
[GGc]...

Boer, Buffing, M, JHEP08 (2015) 053, arXiv:1503.03760 



Classifying Polarized Quark TMDs (including tensor pol) 

factor QUARK TMD RANK FOR VECTOR POL. (SPIN ½) HADRON 
0 1 2 3 

1 

… 
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h1T
⊥[∂∂]g1T

[∂]   h1L
⊥[∂]

h1T
⊥[GG1]   h1T

⊥[GG2]

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

factor QUARK TMD RANK FOR TENSOR POL. (SPIN 1) HADRON 
0 1 2 3 

1 

… … 

… … … 

h1LT
⊥[∂G ]   g1TT

[∂G ]

f1LL
CG
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

f1LT
[∂] f1TT

[∂∂]

f1TT
[GGc]

h1TT
⊥[∂∂G ]

h1TT
⊥[GGGc]

h1LL
⊥[G ]   g1LT

[G ]   h1TT
[G ]δh1LT

[∂.G ]

h1
⊥[G ]   f1T

⊥[G ]

f1   g1   h1

δh1LT
[U ] (x, pT

2 ) =CG
[U ]δh1LT

[∂.G ](x, pT
2 )  with  δh1LT

[∂.G ](x) = 0

...
δ f1

[GGc]...



Operator classification of gluon TMDs 

factor ADDITIONAL PDFs FOR TENSOR POL. SPIN 1 HADRON 
0 1 2 3 4 

1 

… … 

… … 

… … … … 
29 

g1LT
[Gc]

f1LL   h1TT f1LT
[∂]    h1LT

[∂]

f1TT
⊥[GGc]h1LL

⊥[GGc]h1TT
⊥[GGc]

CG ,c
[U ]

CGG ,c
[U ]

CGG ,c
[U ]

g1TT
⊥[∂Gc]

h1TT
⊥⊥[∂∂∂∂]

h1TT
⊥⊥[∂∂GGc]

f1TT
[∂∂]  h1LL

⊥[∂∂]  h1TT
⊥[∂∂]

CGGG ,c
[U ]

factor GLUON TMD PDF RANK FOR SPIN ½ HADRON 
0 1 2 3 

1 

… 

… … 

f1T
⊥[Gc]  h1

[Gc]

f1   g1 g1T
[∂]

h1
⊥[GGc]

CG ,c
[U ]

CGG ,c
[U ]

h1L
⊥[∂Gc] h1T

⊥[∂∂Gc]

h1T
⊥[GGGc]

h1
⊥[∂∂]

CGGG ,c
[U ]

CGGGG ,c
[U ]

h1LT
⊥[∂∂∂]

h1LT
⊥[∂GG ]

h1TT
⊥⊥[GGGGc]

δ f1
[GGc]...



Small x physics in terms of TMDs 

  The single Wilson-loop correlator Γ0  

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  
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factor GLUON TMD PDF RANK FOR UNPOL. AND SPIN ½ HADRON 
0 1 2 3 

1 

eT
⊥[Gc]

e

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

δe[GGc]

δeT
⊥[G.GGc]

�0(x, kT ) =
1

2M2

⇢
e(k2T )�

✏

kST

M

eT (k
2
T )

�

⇡2 �↵� [U,U 0](0, pT ) = C [U,U 0]
GG �↵�

0GG(pT )



Small x physics in terms of TMDs 

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  

  At small x only two structures for unpolarized and transversely polarized 
nucleons with same effects as pomeron & odderon structure 
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⇡2 �↵� [U,U 0](0, pT ) = C [U,U 0]
GG �↵�

0GG(pT )

C

[U ]
G,c f

?[Gc]
1T (x, k2T ) �! C

[U ]
GGG,c�e

[G.GGc]
T (k2T )

C

[U ]
G,c h

[Gc]
1 (x, k2T ) �! C

[U ]
GGG,c�e

[G.GGc]
T (k2T )

D. Boer, M.G. Echevarria, PJM, J. Zhou, PRL 116 (2016) 122001, ArXiv 1511.03485 

f1(x, k
2
T ) �! C

[U ]
GG,c �e

[G.G c](k2T )



  
  Complications if the transverse momentum of two 

initial state hadrons is involved, resulting for DY at 
measured QT in 

 
  This leads to color factors just as for twist-3 

squared in collinear DY 
 

 

 Correlators in description of hard process (e.g. DY) 
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In the resummation of collinear gluons emitted together with active partons from the hadrons
in the Drell-Yan process (DY) effects of color entanglement become important when the transverse
directions are taken into account. It is then no longer possible to write the cross section as the con-
volution of two soft correlators and a hard part. We show that the color entanglement introduces
additional color factors that must be taken into account in the extraction of transverse momen-
tum dependent parton distribution functions (TMD PDFs) from azimuthal asymmetries. Examples
where such effects matter are the extraction of the double Sivers and double Boer-Mulders asym-
metries. Furthermore, we will argue why this color entanglement is a basic ingredient already in the
tree-level description of azimuthal asymmetries.

PACS numbers: 12.38.-t; 13.85.Ni; 13.85.Qk

INTRODUCTION

In Ref. [1] it was shown that the inclusion of contribu-
tions of collinear gluons in high-energy hadroproduction
processes leads to the entanglement of color, complicat-
ing factorization of the cross sections into a hard part and
soft correlators. Collinear gluons refer to gluons emitted
from each of the target hadrons, described by parton dis-
tribution functions, with polarization along the hadron
momentum. In Ref. [2] it was argued that this com-
plication of factorization is even important at tree-level,
where gauge links lead to color entanglement in the pro-
cess, making it impossible to write a process with two
initial state hadrons as the product of two correlators.
These complications do not imply that observables can
no longer be calculated, merely that results are different
from the naive picture and have a richer phenomenol-
ogy. In this paper, we will focus on the Drell-Yan pro-
cess only [3] and show in more detail what is different and
how this affects measurements of asymmetries. In this,
we will go beyond the double weighted case in Ref. [2]
and use the results of Ref. [4] to discuss in general all
asymmetries accessible through Drell-Yan involving un-
polarized or polarized TMD PDFs at leading order in an
expansion in 1/Q, often sloppily referred to as ‘at leading
twist’. We will also show why this effect of color entan-
glement is an essential ingredient, already at tree-level.

WILSON LINES AT TREE-LEVEL

The leading order Drell-Yan cross section before taking
into account gauge links, which are also leading order
contributions, is illustrated in Fig. 1 and given by

dσDY ∼ Trc
[
Φ(x1, p1T )Γ

∗Φ(x2, p2T )Γ
]

=
1

Nc
Φ(x1, p1T )Γ

∗Φ(x2, p2T )Γ, (1)

where Φ and Φ are the quark and antiquark correla-
tors respectively, Fourier transforms of forward matrix
elements of quark fields, and where Γ and Γ∗ repre-
sent the hard scattering interaction in which a virtual
photon or weak vector boson with momentum q is pro-
duced. The standard color factor emerges because the
color trace is usually included in the definition of the
correlator Φ, i.e. Trc[1]/(Trc[1] Trc[1]) = 1/Nc. This is
also the basic expression of the TMD factorized parton
model description after expanding into TMD PDFs. The
result involves soft parts integrated over parton virtual-
ities and is actually a convolution over the parton mo-
menta pi = xi P + piT . High-energy kinematics links the
momentum fractions (or p+ components) to scaling vari-
ables x1 = P2·q/P1·P2 and x2 = P1·q/P1·P2 and the sum
of transverse momenta to the observable transverse mo-
mentum p1T + p2T = qT ≡ q − x1 P1 − x2 P2, which is
the transverse momentum of the virtual photon or the
lepton pair with respect to the momenta P1 and P2, see
Ref. [5].

In the qT -integrated situation, collinear gluons are sim-
ply absorbed in the correlators Φ as color gauge links.

FIG. 1: The DY process in the diagrammatic represen-
tation, where the yellow blobs are described by the TMD
PDFs. The Γ and Γ∗ represent the hard scattering, pro-
ducing a virtual photon.

2

FIG. 2: The gauge connections contributing for Drell-
Yan, indicated by gray blobs at the location in the diagram
where they appear after resummation, the coordinates in
brackets labelling the endpoints of the Wilson lines in co-
ordinate space. The separations ξi are conjugate to par-
ton momenta pi involving light-cone ξ− and ξT directions.
The U− gauge connections run to light-cone ξ− = −∞.

The correlators only depend on momentum fractions that
are conjugate to light-like nonlocalities in the expressions
in terms of partonic fields. Gauge links are just sim-
ple straight Wilson lines. At measured qT , determining
the cross section for Drell-Yan includes gauge links with
transverse separations involving collinear and transverse
gluons. In the process the color remains entangled as il-
lustrated in Fig. 2. Bypassing the details of getting gauge
links in the first place, we note that at measured qT the
ingredients that contribute to the gauge links appear in
different parts of the diagram and cannot be trivially ab-
sorbed in the definition of the TMD correlators, nor can
they be incorporated by a simple redefinition of the corre-
lator. Therefore, the name gauge connection rather than
gauge link is used at this point. The result is

dσDY = Trc
[
U †
−[p2]Φ(x1, p1T )U−[p2]Γ

∗

×U †
−[p1]Φ(x2, p2T )U−[p1]Γ

]
(2)

̸=
1

Nc
Φ[−](x1, p1T )Γ

∗Φ
[−†]

(x2, p2T )Γ,

suppressing all parts of the (partial) cross section that are
not of direct importance for our purpose, e.g. the phase
space factors. As arguments of the Wilson lines we have
used a notation with the momenta p1 and p2 in square
brackets, merely to indicate from which correlator the
gauge connections receive contributions in the form of
gluon emissions. Also, in Eq. 2 the dagger indicates the
direction of the gauge connection in coordinate space, as
is explained in e.g. Ref. [2]. In the ‘attempt’ in the second
expression Φ[−](x1, p1T ) = Trc

[
Φ(x1, p1T )U

†
−[p1]U−[p1]

]

is a color gauge-invariant TMD with a nontrivial (staple
like) link running via light-cone minus infinity.
In the above, both the TMD distribution functions Φ

and the Drell-Yan cross section can be expanded in trans-

verse moments, yielding

Φ(x, pT ) =
∑

m

Φ(m)(x, p2
T
) pm

T
(ϕ), (3)

dσDY(x1, x2, qT ) =
∑

m

dσ(m)
DY (x1, x2, q

2
T
) qm

T
(ϕ),(4)

where the angle ϕ represents the angular dependence of
the transverse vectors pT or qT , respectively and pm

T
(ϕ) is

the symmetric traceless rank m tensor constructed from
the transverse momenta, i.e.

pα1...αm

T
= pα1

T
. . . pαm

T
−traces ⇐⇒

|pT |m

2m−1
e±imϕ. (5)

AZIMUTHAL EXPANSION OF THE PARTON

CORRELATORS

By inverting these expressions, one can relate the def-
inite rank TMDs Φ(m)(x, p2

T
) to the azimuthally inte-

grated full TMD PDFs Φ(x, pT ) weighted with pm
T
(ϕ),

as explained in detail in Refs. [2, 4]. The definite rank
functions appearing in the expansion for Φ are actually
quark or gluon correlators with in the matrix elements
additional derivatives or gluonic fields, depending on the
inserted operator being iDα

T
or Aα

T
denoted as Φα

D, Φα
A,

Φαβ
DD, etc. In the treatment of TMD PDFs one needs ac-

tually only particular combinations of these correlators.
Performing the transverse momentum weightings is sen-
sitive to the nonlocality of the operators, in particular
also the gauge links and their path. For example, for a
TMD correlator with a gauge link U one finds

Φα [U ]
∂ (x) =

∫
d2pT pα

T
Φ[U ](x, pT )

= Φ̃α
∂ (x) + C [U ]

G Φα
G(x), (6)

where Φ̃α
∂ (x) = Φα

D(x)−Φα
A(x) is the difference between a

quark correlator including a covariant derivative and the
quark-gluon-quark correlator, while Φα

G(x) is a gluonic
pole matrix element, corresponding to the emission of a
collinear gluon of zero momentum [6]. These functions
are collinear and independent of the gauge link. That

dependence is only in the gluonic pole coefficient C [U ]
G ,

see Ref. [7]. For the simple staple gauge links U± the

gluonic pole coefficients are C [±]
G = ±1. Similarly, we

have higher moments,

Φαβ [U ]
∂∂ (x) = Φ̃αβ

∂∂ (x) + C [U ]
G Φ̃αβ

{∂G}(x)

+ C [U ]
GG,cΦ

αβ
GG,c(x), (7)

etc. An extra index c is needed if there are multiple
possibilities to construct a color singlet as is the case for
a field combination ψGGψ, namely Trc[GGψψ] (c = 1)
and Trc[GG] Trc[ψψ]/Nc (c = 2). For the staple like links

only one configuration is relevant, having C [±]
GG,1 = 1 and

 Two initial state hadrons (e.g. DY) 

σ DY (x1,x2 ,qT )  = 1
Nc
f1(x1, p1T )⊗ f1(x2 , p2T )

                     − 1
Nc

1
Nc

2 −1
h1
⊥(x1, p1T )⊗ h1

⊥(x2 , p2T )cos(2ϕ )

Buffing, M, PRL 112 (2014), 092002 



Entanglement in processes with two initial state hadrons 

Resummation of collinear gluons coupling onto external lines contribute to 
gauge links 

  …. leading to entangled situation (Rogers, M), breaking universality  

  Gauge knots (Buffing, M) 

33 ψ(ξ1)    ψ(01)

1[ ,0 ]−∞

2[ , ]ξ −∞ 2[ ,0 ]−∞

1[ , ]ξ −∞

1 2[ , ][ , ]ξ ξ+∞ +∞

ψ(ξ2 )    ψ(02 )

1 2[0 , ][0 , ]+∞ +∞



Conclusions and outlook 

  TMDs extend collinear PDFs to novel TMD PDF functions 
  Although operator structure including ETQS matrix elements 

ultimately has same operators basis as collinear approach, it is a 
physically relevant combination/resummation of higher twist 
operators that governs transverse structure (definite rank linked to 
azimuthal structure) 

  Transverse structure for PDFs (in contrast to PFFs) requires careful 
study of process dependence linked to color flow in hard process, 
determining gauge links 

  Like spin, the transverse structure does offer valuable tools, but you 
need to know how to use them! 
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