Teórica UAM-CSIC

Attacking one-loop multileg Feynman integrals with the Loop-Tree Duality

Grigorios Chachamis, IFT UAM-CSIC Madrid
In collaboration with S. Buchta, P. Draggiotis, G. Rodrigo arXiv:1510.00187

DIS 2016, 11-15 April, DESY Hamburg, Germany

Outline

- Introduction
- Implementation
- Results
- Summary and Outlook

The constant need for higher order radiative corrections

- The LHC is a hadronic collider operating at high energies
- higher multiplicities
- proton structure
- very large soft and collinear corrections
- logarithms of ratios of very different scales
- Rule of thumb:
- LO: order of magnitude estimate
- NLO: first reliable estimate of the central value
- NNLO: first reliable estimate of the uncertainty
- The Loop-Tree Duality promises to deal with virtual and real corrections on equal footing. In this talk we will see how the method copes with the virtual corrections

A generic one-loop integral

 Number of legs N, number of spacetime dimensions is D. Assume that it is UV and IR finite.$L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=-i \int \frac{d^{d} \ell}{(2 \pi)^{d}} \prod_{i=1}^{N} \frac{1}{q_{i}^{2}+i 0}$
ℓ^{μ} is the loop momentum and $q_{i}=\ell+\sum_{k=1}^{i} p_{k}$
 are the momenta of the propagators.
$G_{F}(q) \equiv \frac{1}{q^{2}+i 0}$ is the Feynman propagator. Introduce the shorthand notation -i $\int \frac{d^{d} \ell}{(2 \pi)^{d}} \bullet \equiv \int_{\ell} \bullet$, then

$$
L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\int_{\ell} \prod_{i=1}^{N} G_{F}\left(q_{i}\right)
$$

"Feynman" and "advanced"

$$
\begin{aligned}
& \text { propagators } \\
& L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\int_{\ell} \prod_{i=1}^{N} G_{F}\left(q_{i}\right) \\
& G_{F}(q) \equiv \frac{1}{q^{2}+i 0} \text { and } G_{A}(q)=\frac{1}{q^{2}-i 0 q_{0}}
\end{aligned}
$$

Feynman and advanced propagators are related:
$G_{A}(q)=G_{F}(q)+\widetilde{\delta}(q)$ with $\widetilde{\delta}(\ell) \equiv 2 \pi i \theta\left(\ell_{0}\right) \delta\left(\ell^{2}\right)$
This also holds when the propagators are massive but now $\widetilde{\delta}\left(q_{i}\right) \rightarrow \widetilde{\delta}\left(q_{i}\right)=2 \pi i \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$

"Feynman" and "advanced"

propagators

$L^{(1)}\left(\varphi_{1}, p_{2}, \ldots, p_{N}\right)=\int_{t} \prod_{=1}^{N} G_{r}\left(q_{4}\right)$
$G_{F}(q) \equiv \frac{1}{q^{2}+i 0}$ and $G_{A}(q) \equiv \frac{1}{q^{2}-i 0 q_{0}}$

Feynman and advanced propagators differ in the position of the poles in the complex plane

The Feynman Tree Theorem

$$
L^{L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)}=\int_{t} \prod_{i=1}^{N} G_{r}\left(q_{4}\right) \Rightarrow L_{A}^{\left(T_{A}\left(p_{1}, p_{2}, \ldots, p_{N}\right)\right.}=\int_{t} \prod_{i=1}^{N} G_{A}\left(q_{t}\right)
$$

Then $L_{A}^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=0$

The Loop-Tree Duality

$$
\begin{aligned}
& L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\int_{\ell} \prod_{i=1}^{N} G_{F}\left(q_{i}\right) \\
& G_{F}\left(q_{i}\right)=\frac{1}{q_{i}^{2}-m_{i}^{2}+i 0}
\end{aligned}
$$

$$
L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=\int_{\vec{\ell}} \int d \ell_{0} \prod_{i=1}^{N} G_{F}\left(q_{i}\right)
$$

$$
=\int_{\vec{\ell}} \int_{C_{L}} d \ell_{0} \prod_{i=1}^{N} G_{F}\left(q_{i}\right)=-2 \pi i \int_{\vec{\ell}} \sum \operatorname{Res}_{\left\{\operatorname{Im} \ell_{0}<0\right\}}\left[\prod_{i=1}^{N} G_{F}\left(q_{i}\right)\right]^{\bullet}
$$

$$
\begin{gathered}
\text { The LOOP-Tree Duality } \\
L^{(1)}\left(p_{1}, p_{2}, \ldots, p_{N}\right)=-\sum \int_{\ell_{1}} \tilde{\delta}\left(q_{i}\right) \prod_{\substack{j=1 \\
j \neq i}}^{N} G_{D}\left(q_{i} ; q_{j}\right)
\end{gathered}
$$

η is a future-like vector such that $\eta_{\mu}=\left(\eta_{0}, \eta\right)$, with $\eta_{0} \geq 0, \eta^{2}=\eta_{\mu} \eta^{\mu} \geq 0$
Dual propagator, keeps proper track of the small imaginary parts. Notice that $\left(\mathrm{q}_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}}\right)$ does not depend on the loop momentum. Recall that $\widetilde{\delta}\left(q_{i}\right) \rightarrow \widetilde{\delta}\left(q_{i}\right)=2 \pi i \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$

A graphical representation of the Loop-Tree Duality

En explicit result

$L^{(1)}\left(p_{1}, p_{2}, p_{3}\right)=\int_{\ell} G_{F}\left(q_{1}\right) G_{F}\left(q_{2}\right) G_{F}\left(q_{3}\right)$
$G_{F}\left(q_{1}\right)=\frac{1}{q_{1}^{2}-m_{1}^{2}+i 0}, G_{F}\left(q_{2}\right)=\frac{1}{q_{2}^{2}-m_{2}^{2}+i 0}, G_{F}\left(q_{3}\right)=\frac{1}{q_{3}^{2}-m_{3}^{2}+i 0}$
$q_{1}=\ell+p_{1}, q_{2}=\ell+p_{1}+p_{2}=\ell, q_{3}=\ell$

Let us apply the Loop-Tree Duality

$$
\begin{align*}
L^{(1)}\left(p_{1}, p_{2}, p_{3}\right) & =\int_{\ell} \widetilde{\delta}\left(q_{1}\right) G_{D}\left(q_{1} ; q_{2}\right) G_{D}\left(q_{1} ; q_{3}\right) & & \text { first contribution } \tag{1}\\
& +\int_{\ell} G_{D}\left(q_{2} ; q_{1}\right) \widetilde{\delta}\left(q_{2}\right) G_{D}\left(q_{2} ; q_{3}\right) & & \text { second contribution } \tag{2}\\
& +\int_{\ell} G_{D}\left(q_{3} ; q_{1}\right) G_{D}\left(q_{3} ; q_{2}\right) \widetilde{\delta}\left(q_{3}\right) & & \text { third contribution } \tag{3}
\end{align*}
$$

En explicit result

$$
\begin{aligned}
& L^{(1)}\left(p_{1}, p_{2}, p_{3}\right)=\int_{\ell} \widetilde{\delta}\left(q_{1}\right) G_{D}\left(q_{1} ; q_{2}\right) G_{D}\left(q_{1} ; q_{3}\right) \quad \text { first contribution } \quad\left(\mathrm{I}_{1}\right) \\
&+\int_{\ell} G_{D}\left(q_{2} ; q_{1}\right) \widetilde{\delta}\left(q_{2}\right) G_{D}\left(q_{2} ; q_{3}\right) \quad \text { second contribution }\left(\mathrm{I}_{2}\right) \\
&+\int_{\ell} G_{D}\left(q_{3} ; q_{1}\right) G_{D}\left(q_{3} ; q_{2}\right) \widetilde{\delta}\left(q_{3}\right) \quad \text { third contribution } \quad\left(\mathrm{I}_{3}\right) \\
& \widetilde{\delta}\left(q_{1}\right)=\frac{\delta\left(\ell_{0}-\left(-p_{1,0}+\sqrt{\left(\ell+\mathbf{p}_{1}\right)^{2}+m_{1}^{2}}\right)\right)}{2 \sqrt{\left.\left(\ell+\mathbf{p}_{1}\right)^{2}+m_{1}^{2}\right)}} \\
& \widetilde{\delta}\left(q_{2}\right)=\frac{\delta\left(\ell_{0}-\left(-p_{1,0}-p_{2,0}+\sqrt{\left.\left.\left(\ell+\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}+m_{2}^{2}\right)\right)}\right.\right.}{2 \sqrt{\left.\left(\ell+\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}+m_{2}^{2}\right)}} \\
& \widetilde{\delta}\left(q_{3}\right)=\frac{\delta\left(\ell_{0}-\sqrt{\ell^{2}+m_{3}^{2}}\right)}{2 \sqrt{\ell^{2}+m_{3}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{3}=-\int_{\ell} \frac{1}{2 p_{1,0} \sqrt{\ell^{2}+m_{3}^{2}}+2 \boldsymbol{\ell} \cdot \mathbf{p}_{1}-m_{1}^{2}+m_{3}^{2}+p_{1}^{2}-i 0 \eta k_{13}} \cdot \frac{1}{2 \sqrt{\ell^{2}+m_{3}^{2}}} \\
& \frac{1}{2\left(p_{1,0}+p_{2,0}\right) \sqrt{\ell^{2}+m_{3}^{2}}+2 \boldsymbol{\ell} \cdot\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)+\left(p_{1}+p_{2}\right)^{2}-m_{2}^{2}+m_{3}^{2}-i 0 \eta k_{23}}
\end{aligned}
$$

Contour deformation

Assume $f\left(\ell_{x}\right)=\frac{1}{\ell_{x}^{2}-E^{2}+i 0}$ with poles $\quad \ell_{x \pm}= \pm(E-i 0)$

$$
\ell_{x} \rightarrow \ell_{x}^{\prime}=\underset{\text { shape of the contour deformation }}{\ell_{x}+i \lambda \ell_{x} \exp \left(-\frac{\ell_{x}^{2}-E^{2}}{2 E^{2}}\right)}
$$

Implementation

- In C++ (double and extended precision)
- Uses the Cuba library for numerical integration (T. Hahn)
- In particular, Cuhre (G. Berntsen, T. O. Espelid, A. Genz) and Vegas (G. P. Lepage)
- Input: - number of legs
- external momenta
- internal masses
- The user is free to choose between Cuhre and Vegas and also to change the parameters of the contour deformation
- MATHEMATICA was used extensively for cross-checking and during the development
- Two other programs were heavily used

Looptools (T. Hahn, M. Perez-Victoria) and
SecDec v3 (S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke) to get reference values and generally for cross-checks

- Special thanks to S. Borowka and to G. Heinrich for advice in running SecDec for some special cases

Results

- All results were obtained on a Desktop machine with an Intel i7 (3.4 GHz) processor, \# cores = 4 and \# threads $=8$
- The SecDec run times in the following are only indicative, no optimisations were used and the important for us was the SecDec result as a reference value. Wherever run times of SecDec and the LoopTree Duality are displayed it is only to give a feeling of the increasing complexity of the integrals calculated and not a comparison of the two programs!

Scalar triangles

	Real Part	Real Error	Imaginary Part	Imaginary Error
LoopTools P.3	$5.37305 \mathrm{E}-4$	0	$-6.68103 \mathrm{E}-4$	0
Loop-Tree Duality P.3	$5.37307 \mathrm{E}-4$	$8.6 \mathrm{E}-9$	$-6.68103 \mathrm{E}-4$	$8.6 \mathrm{E}-9$
LoopTools P.4	$-5.61370 \mathrm{E}-7$	0	$-1.01665 \mathrm{E}-6$	0
Loop-Tree Duality P.4	$-5.61371 \mathrm{E}-7$	$7.2 \mathrm{E}-10$	$-1.01666 \mathrm{E}-6$	$7.2 \mathrm{E}-10$

$$
\begin{aligned}
& \text { Point } 3 p_{1}=\{10.51284,6.89159,-7.40660,-2.85795\} \\
& p_{2}=\{6.45709,2.46635,5.84093,1.22257\} \\
& m_{1}=m_{2}=m_{3}=0.52559 \\
& \text { Point } 4 p_{1}=\{95.77004,31.32025,-34.08106,-9.38565\} \\
& p_{2}=\{94.54738,-53.84229,67.11107,45.56763\} \\
& m_{1}=83.02643, m_{2}=76.12873, m_{3}=55.00359
\end{aligned}
$$

<1 to 15 seconds for 4 digits accuracy

Scalar triangles

All internal masses equal
The red curve is from running LoopTools

Scalar boxes

	Real Part	Real Error	Imaginary Part	Imaginary Error
LoopTools P. 7	$-2.38766 \mathrm{E}-10$	0	$-3.03080 \mathrm{E}-10$	0
Loop-Tree Duality P.7	$-2.38798 \mathrm{E}-10$	$8.2 \mathrm{E}-13$	$-3.03084 \mathrm{E}-10$	$8.2 \mathrm{E}-13$
LoopTools P.8	$-4.27118 \mathrm{E}-11$	0	$4.49304 \mathrm{E}-11$	0
Loop-Tree Duality P.8	$-4.27127 \mathrm{E}-11$	$5.3 \mathrm{E}-14$	$4.49301 \mathrm{E}-11$	$5.3 \mathrm{E}-14$
LoopTools P.9	$6.43041 \mathrm{E}-11$	0	$1.61607 \mathrm{E}-10$	0
Loop-Tree Duality P.9	$6.43045 \mathrm{E}-11$	$8.4 \mathrm{E}-15$	$1.61607 \mathrm{E}-10$	$8.4 \mathrm{E}-15$
LoopTools P.10	$-4.34528 \mathrm{E}-11$	0	$3.99020 \mathrm{E}-11$	0
Loop-Tree Duality P.10	$-4.34526 \mathrm{E}-11$	$3.5 \mathrm{E}-14$	$3.99014 \mathrm{E}-11$	$3.5 \mathrm{E}-14$

Point $7 p_{1}=\{62.80274,-49.71968,-5.53340,-79.44048\}$
$p_{2}=\{48.59375,-1.65847,34.91140,71.89564\}$
$p_{3}=\{76.75934,-19.14334,-17.10279,30.22959\}$
$m_{1}=m_{2}=m_{3}=m_{4}=9.82998$
Point $8 p_{1}=\{98.04093,77.37405,30.53434,-81.88155\}$
$p_{2}=\{73.67657,-53.78754,13.69987,14.20439\}$
$p_{3}=\{68.14197,-36.48119,59.89499,-81.79030\}$
$m_{1}=81.44869, m_{2}=94.39003, m_{3}=57.53145, m_{4}=0.40190$

Point $9 p_{1}=\{90.15393,-60.44028,-18.19041,42.34210\}$
$p_{2}=\{75.27949,86.12082,19.15087,-95.80345\}$
$p_{3}=\{14.34134,2.00088,87.56698,39.80553\}$
$m_{1}=m_{2}=21.23407, m_{3}=m_{4}=81.40164$
Point $10 p_{1}=\{56.88939,87.04163,-34.62173,-42.86104\}$
$p_{2}=\{92.86718,-91.88334,59.75945,38.70047\}$
$p_{3}=\{55.98527,-35.20008,9.02722,82.97219\}$
$m_{1}=m_{3}=67.88777, m_{2}=m_{4}=40.77317$
<1 to 20 seconds for 4 digits accuracy

Scalar boxes

All internal masses equal
The red curve is from running LoopTools

Scalar pentagons

	Real Part	Real Error	Imaginary Part	Imaginary Error
LoopTools P.13	$1.02350 \mathrm{E}-11$	0	$1.40382 \mathrm{E}-11$	0
Loop-Tree Duality P.13	$1.02353 \mathrm{E}-11$	$1.0 \mathrm{E}-16$	$1.40385 \mathrm{E}-11$	$1.0 \mathrm{E}-16$
LoopTools P.14	$7.46345 \mathrm{E}-15$	0	$-9.13484 \mathrm{E}-15$	0
Loop-Tree Duality P.14	$7.46309 \mathrm{E}-15$	$6.1 \mathrm{E}-18$	$-9.13444 \mathrm{E}-15$	$6.1 \mathrm{E}-18$
LoopTools P.15	$6.89836 \mathrm{E}-15$	0	$2.14893 \mathrm{E}-15$	0
Loop-Tree Duality P.15	$6.89848 \mathrm{E}-15$	$6.5 \mathrm{E}-18$	$2.14894 \mathrm{E}-15$	$6.5 \mathrm{E}-18$

Point $13 p_{1}=\{1.58374,6.86200,-15.06805,-10.63574\}$
$p_{2}=\{7.54800,-3.36539,34.57385,27.52676\}$
$p_{3}=\{43.36396,-49.27646,-25.35062,-17.68709\}$
$p_{4}=\{22.58103,38.31530,-14.67581,-3.08209\}$
$m_{1}=m_{2}=m_{3}=m_{4}=m_{5}=2.76340$

Point $15 p_{1}=\{-32.14401,-64.50445,46.04455,-75.56462\}$
$p_{2}=\{-96.90340,-27.60002,-71.50486,86.25541\}$
$p_{3}=\{-37.95135,46.18586,25.67520,-71.38501\}$
$p_{4}=\{-87.67870,66.66463,-36.20151,-27.37362\}$
$m_{1}=m_{2}=m_{3}=79.63229, m_{4}=m_{5}=51.70237$

Point $14 p_{1}=\{-93.06712,-36.37997,-27.71460,38.42206\}$
$p_{2}=\{-46.33465,-11.90909,32.33395,46.42742\}$
$p_{3}=\{8.41724,-83.92296,56.21715,34.04937\}$
$p_{4}=\{-15.23696,71.33931,48.68306,-53.67870\}$
$m_{1}=59.10425, m_{2}=60.25099, m_{3}=76.79109$
$m_{4}=65.27606, m_{5}=5.99925$

Tensor diagrams

- In general, tensor one-loop diagrams do not present a priori an extra difficulty for the Loop-Tree Duality. The run times seem to increase only a bit in order to get the same accuracy as in the scalar diagrams case.

Tensor pentagons

		Rank	Tensor Pentagon	Real Part	Imaginary Part	Time [s]
	P16	2	LoopTools	-1.86472×10^{-8}		
			SecDec	$-1.86471(2) \times 10^{-8}$		45
			LTD	$-1.86462(26) \times 10^{-8}$		1
	P17	3	LoopTools	1.74828×10^{-3}		
			SecDec	$1.74828(17) \times 10^{-3}$		550
			LTD	$1.74808(283) \times 10^{-3}$		1
	P18	2	LoopTools	-1.68298×10^{-6}	$+i 1.98303 \times 10^{-6}$	
			SecDec	$-1.68307(56) \times 10^{-6}$	$+i 1.98279(90) \times 10^{-6}$	66
			LTD	$-1.68298(74) \times 10^{-6}$	$+i 1.98299(74) \times 10^{-6}$	36
	P19	3	LoopTools	-8.34718×10^{-2}	$+i 1.10217 \times 10^{-2}$	
			SecDec	$-8.33284(829) \times 10^{-2}$	$+i 1.10232(107) \times 10^{-2}$	1501
			LTD	$-8.34829(757) \times 10^{-2}$	$+i 1.10119(757) \times 10^{-2}$	38

$\left(\ell \cdot p_{3}\right) \times\left(\ell \cdot p_{4}\right)$
$\left(\ell \cdot p_{3}\right) \times\left(\ell \cdot p_{4}\right) \times\left(\ell \cdot p_{5}\right)$

Tensor hexagons

	Rank	Tensor Hexagon	Real Part	Imaginary Part	Time[s]
P20	1	SecDec	$-1.21585(12) \times 10^{-15}$		36
		LTD	$-1.21552(354) \times 10^{-15}$		6
P21	3	SecDec	$4.46117(37) \times 10^{-9}$		5498
		LTD	$4.461369(3) \times 10^{-9}$		11
P22	1	SecDec	$1.01359(23) \times 10^{-15}$	$+i 2.68657(26) \times 10^{-15}$	33
		LTD	$1.01345(130) \times 10^{-15}$	$+i 2.68633(130) \times 10^{-15}$	72
P23	2	SecDec	$2.45315(24) \times 10^{-12}$	$-i 2.06087(20) \times 10^{-12}$	337
		LTD	$2.45273(727) \times 10^{-12}$	$-i 2.06202(727) \times 10^{-12}$	75
P24	3	SecDec	$-2.07531(19) \times 10^{-6}$	$+i 6.97158(56) \times 10^{-7}$	14280
		LTD	$-2.07526(8) \times 10^{-6}$	$+i 6.97192(8) \times 10^{-7}$	85

$\left(\ell \cdot p_{4}\right) \times\left(\ell \cdot p_{5}\right) \times\left(\ell \cdot p_{6}\right)$

$$
\begin{aligned}
\text { P24 } p_{1} & =(-70.26380,96.72681,21.66556,-37.40054) \\
p_{2} & =(-13.45985,2.12040,3.20198,91.44246) \\
p_{3} & =(-62.59164,-29.93690,-22.16595,-58.38466) \\
p_{4} & =(-67.60797,-83.23480,18.49429,8.94427) \\
p_{5} & =(-34.70936,-62.59326,-60.71318,2.77450) \\
m_{1} & =94.53242, m_{2}=64.45092, m_{3}=74.74299 \\
m_{4} & =10.63129, m_{5}=31.77881, m_{6}=23.93819
\end{aligned}
$$

Conclusions \& Outlook

- The Loop-Tree Duality has many appealing theoretical properties
- Here we have shown numerical results from a first implementation of the method suitable for computing one-loop Feynman diagrams
- The method seems to excel in cases where we have many legs and many different scales as the increase of the run time is mild
- Near future: attack two-loop multi-scale diagrams

