

Combined analysis of charm-quark fragmentation-fraction measurements

arXiv:1509.01061, submitted to EPJ C

Mykhailo Lisovyi^a, Andrii Verbytskyi^b, <u>Oleksandr Zenaiev^c</u>

- ^a Physikalisches Institut der Universität Heidelberg
- ^b Max-Planck-Institut für Physik

 c DESY

DIS2016, Hamburg, 12.04.2016

 $\sigma = PDF \otimes ME \otimes FF$

- Fragmentation functions and fragmentation fractions (FF) cannot be calculated perturbatively ⇒ have to be extracted from data.
- Are FF universal?
- Do FF sum up to 1?

Input data

Criteria:

- $\sqrt{s} \gg 2m_c \approx 3 \text{ GeV}$
- minimal model dependence, e.g. particle beams (absence of matter effects)
- sufficient precision

Input data sets:

- e^+e^- :
 - B-factories (CLEO, ARGUS, BABAR, BELLE)
 - LEP (OPAL, ALEPH, DELPHI)
- $e^{\pm}p$:
 - DIS (ZEUS, H1)
 - PHP (ZEUS)
- pp: LHCb, ALICE, ATLAS

Measurements are updated to latest branching ratios from PDG 2014 + 2015 update

Calculation of fragmentation fractions

Two considered FF calculation:

$\ \, \bullet f(c \to H) = \sigma(H)/\sigma(c)$

- Need to know total charm x-section $\sigma(c)$: e^+e^- only
- Can check $S = \sum_{w.d.} f(c \to H) = 1$

 $\ \, {\bf 2} \ \, f(c \to H) = \sigma(H) / \sum_{w.d.} \sigma(H)$

- Need to measure all weakly decaying (w.d.) final states
- More model independent (the only assumption $S = \sum_{w.d.} f(c \rightarrow H) = 1$)

Weakly decaying final states: D^0 , D^+ , D_s^+ , Λ_c^+ , Ξ_c^+ , Ξ_c^0 and Ω_c^0

$$\begin{split} & \text{Final states } \Xi_c^+, \, \Xi_c^0 \text{ and } \Omega_c^0 \text{ are poorly studied} \Rightarrow \text{take the ratios from strange:} \\ & \sigma(\Xi_c^+) + \sigma(\Xi_c^0) + \sigma(\Omega_c^0) = \lambda \sigma(\Lambda_c^+) \\ & \sum_{w.d.} \sigma(H) = \sigma(D^0) + \sigma(D^+) + \sigma(D_s^+) + \sigma(\Lambda_c^+) + \lambda \sigma(\Lambda_c^+) \\ & \lambda = 2 \frac{f(s \to \Xi^-)}{f(s \to \Lambda^0)} + \frac{f(s \to \Omega^-)}{f(s \to \Lambda^0)} = 0.136 \pm 0.006 \text{ (PDG)} \Rightarrow \Xi_c^+, \Xi_c^0, \Omega_c^0 < 1\% \end{split}$$

In addition FF of some excited states have been combined

Combination procedure

- χ^2 minimisation with MINUIT
- Free parameters: FF, charm x-sections, kinematic phase space factors
- Correlation of branching fractions uncertainties are taken into account
- Experimental correlation uncertainties are taken into account if available
- Combination is performed separately for B-factories, LEP, DIS, PHP and pp, as well as one global combination
- Additionaly calculated:

$$\begin{split} R_{u/d} &= \frac{f(c \to c\bar{u})}{f(c \to c\bar{d})} \approx \frac{f(c \to D^0) - f(c \to D^{*+})\mathcal{B}_{D^{*+} \to D^0}}{f(c \to D^+) + f(c \to D^{*+})\mathcal{B}_{D^{*+} \to D^0}} \\ \gamma_s &= \frac{2f(c \to c\bar{s})}{f(c \to c\bar{u}/\bar{d})} (J=0) \approx \frac{2f(c \to D_s^+)}{f(c \to D^+) + f(c \to D^0)} \\ \gamma_s^* &= \frac{2f(c \to c\bar{s})}{f(c \to c\bar{u}/\bar{d})} (J=1) \approx \frac{2f(c \to D_s^{*+})}{f(c \to D^{*+}) + f(c \to D^{*0})} \\ P_V^d &= \frac{f(c \to c\bar{u}/\bar{d})(J=1)}{f(c \to c\bar{u}/\bar{d})(J=0)} \approx \frac{f(c \to D^{*+}) + f(c \to D^{*0})}{f(c \to D^+) + f(c \to D^0)} \end{split}$$

Results: e^+e^-

$\underline{B-factories}$

Fixed $\sigma(e^+e^- \rightarrow c)$	Constrained S	
0.2470 ± 0.0137	0.2525 ± 0.0155	
0.2241 ± 0.0304	0.2291 ± 0.0316	
0.0532 ± 0.0082	0.0544 ± 0.0085	
0.2639 ± 0.0139	0.2698 ± 0.0125	
0.5772 ± 0.0241	0.5901 ± 0.0140	
0.0691 ± 0.0045	0.0707 ± 0.0048	
0.0526 ± 0.0031	0.0611 ± 0.0060	
19.2	17.0	
21	20	
0.9701 ± 0.0284	1.0000 ± 0.0005	7
0.9508 ± 0.0752	0.9508 ± 0.0752	
0.5601 ± 0.0432	0.5601 ± 0.0431	
0.1644 ± 0.0121	0.1644 ± 0.0121	
0.2257 ± 0.0385	0.2257 ± 0.0385	
	$\begin{array}{l} \mbox{Fixed } \sigma(e^+e^- \to c) \\ 0.2470 \pm 0.0137 \\ 0.2241 \pm 0.0304 \\ 0.0532 \pm 0.0082 \\ 0.2639 \pm 0.0139 \\ 0.5772 \pm 0.0241 \\ 0.0691 \pm 0.0045 \\ 0.0526 \pm 0.0031 \\ \hline 19.2 \\ 21 \\ 0.9701 \pm 0.0284 \\ 0.9508 \pm 0.0752 \\ 0.5601 \pm 0.0432 \\ 0.5601 \pm 0.0432 \\ 0.1644 \pm 0.0121 \\ 0.2257 \pm 0.0385 \end{array}$	Fixed $\sigma(e^+e^- \rightarrow c)$ Constrained S 0.2470 \pm 0.0137 0.2525 \pm 0.0155 0.2241 \pm 0.0304 0.2291 \pm 0.0316 0.5322 \pm 0.0082 0.0544 \pm 0.0085 0.639 \pm 0.0139 0.2698 \pm 0.0125 0.5772 \pm 0.0241 0.5901 \pm 0.040 0.691 \pm 0.042 0.5901 \pm 0.044 0.0526 \pm 0.0031 0.0611 \pm 0.0060 19.2 17.0 21 20 0.9701 \pm 0.0752 0.9508 \pm 0.0752 0.5601 \pm 0.0432 0.5601 \pm 0.0431 0.6611 \pm 0.0121 0.1644 \pm 0.0121 0.1644 \pm 0.0121 0.1644 \pm 0.0121

• Good consistency

• $S\approx 1~{\rm checked}$

<u>LEP</u>

	Fixed $\frac{\Gamma_{c\bar{c}}}{\Gamma_{had}}$	Constrained S
$f(c \to D^{*+})$	0.2369 ± 0.0064	0.2454 ± 0.0071
$f(c \to D_s^{*+})$	0.0545 ± 0.0144	0.0547 ± 0.0145
$f(c \to D^+)$	0.2267 ± 0.0100	0.2429 ± 0.0102
$f(c \to D^0)$	0.5470 ± 0.0215	0.5894 ± 0.0132
$f(c \to D_s^+)$	0.0925 ± 0.0082	0.0996 ± 0.0083
$f(c \to \Lambda_c^+)$	0.0555 ± 0.0065	0.0600 ± 0.0066
χ^2	6.7	7.8
$n_{ m dof}$	13	13
S	0.9292 ± 0.0261	1.0000 ± 0.0005
$R_{u/d}$	0.9987 ± 0.0627	1.0348 ± 0.0580
P_V^d	0.6119 ± 0.0185	0.6000 ± 0.0177
γ_s	0.2390 ± 0.0224	0.2394 ± 0.0223

- Good consistency
- $S\approx 1$ within $3~\sigma$

Results: $e^{\pm}p$, pp

<u>DIS</u>

	Constrained S
$f(c \to D^{*+})$	0.2372 ± 0.0173
$f(c \to D^+)$	0.2170 ± 0.0203
$f(c \to D^0)$	0.6272 ± 0.0287
$f(c \to D_s^+)$	0.0945 ± 0.0124
$f(c \to \Lambda_c^+)$	0.0540 ± 0.0195
χ^2	1.7
$\frac{\chi^2}{n_{ m dof}}$	1.7 3
$\frac{\chi^2}{n_{\rm dof}}$	$\frac{1.7}{3}$ 1.0000 ± 0.0004
$\frac{\chi^2}{n_{\rm dof}}$ $\frac{S}{R_{u/d}}$	$\begin{array}{c} 1.7\\ \hline 3\\ \hline 1.0000 \pm 0.0004\\ \hline 1.2361 \pm 0.1331 \end{array}$
	$\begin{array}{c} 1.7\\ 3\\ \hline 1.0000 \pm 0.0004\\ 1.2361 \pm 0.1331\\ 0.6282 \pm 0.0440 \end{array}$

<u>PHP</u>

	Constrained S
$f(c \to D^{*+})$	0.2345 ± 0.0081
$f(c \to D^+)$	0.2341 ± 0.0093
$f(c \to D^0)$	0.5991 ± 0.0126
$f(c \to D_s^+)$	0.0901 ± 0.0062
$f(c \to \Lambda_c^+)$	0.0675 ± 0.0106
χ^2	5.2
$\frac{\chi^2}{n_{ m dof}}$	5.2
$\frac{\chi^2}{\frac{n_{\rm dof}}{S}}$	5.2 4 1.0000 ± 0.0005
$ \begin{array}{c} \chi^2 \\ \hline n_{\rm dof} \\ \hline S \\ \hline R_{u/d} \end{array} $	$5.2 \\ 4 \\ 1.0000 \pm 0.0005 \\ 1.1209 \pm 0.0545 \\ $
$ \begin{array}{c} \chi^2 \\ \hline n_{\rm dof} \\ \hline S \\ \hline R_{u/d} \\ \hline P_V^d \end{array} $	$5.2 \\ 4 \\ \hline 1.0000 \pm 0.0005 \\ \hline 1.1209 \pm 0.0545 \\ \hline 0.5970 \pm 0.0181 \\ \hline$

<u>pp</u>

	Constrained S
$f(c \to D^{*+})$	0.2336 ± 0.0177
$f(c \to D^+)$	0.2277 ± 0.0129
$f(c \to D^0)$	0.6192 ± 0.0159
$f(c \to D_s^+)$	0.0803 ± 0.0080
$f(c \to \Lambda_c^+)$	0.0641 ± 0.0122
χ^2	7.0
$\frac{\chi^2}{n_{\rm dof}}$	7.0
$\frac{\chi^2}{n_{\rm dof}}$	7.0 7 1.0000 ± 0.0005
$\frac{\chi^2}{n_{\rm dof}}$ $\frac{S}{R_{u/d}}$	$7.0 \\ 7 \\ 1.0000 \pm 0.0005 \\ 1.1948 \pm 0.1020 \\$
$ \frac{\chi^2}{n_{\rm dof}} S \overline{R_{u/d}} P_V^d $	$7.0 \\ 7 \\ 1.0000 \pm 0.0005 \\ 1.1948 \pm 0.1020 \\ 0.6055 \pm 0.0307 \\ 0.0307 \\ 0.0000 \\ $

- Only constrained S fit possible
- Good consistency

Results: global combination, figures

D-Iacto	nes+LEF-	+DIS $+$ FHF $+$ p
	Constrained S	Constrained S ,
		fixed $\sigma(e^+e^- \rightarrow c)$, $\frac{I_{cc}}{\Gamma_{had}}$.
$f(c \rightarrow D^{*+})$	0.2430 ± 0.0049	0.2386 ± 0.0046
$f(c \rightarrow D^{*0})$	0.2305 ± 0.0315	0.2251 ± 0.0299
$f(c \rightarrow D_s^{*+})$	0.0547 ± 0.0074	0.0536 ± 0.0072
$f(c \rightarrow D^+)$	0.2404 ± 0.0067	0.2439 ± 0.0067
$f(c \rightarrow D^0)$	0.6089 ± 0.0076	0.6143 ± 0.0073
$f(c \to D_s^+)$	0.0799 ± 0.0040	0.0794 ± 0.0040
$f(c \rightarrow \Lambda_c^+)$	0.0623 ± 0.0041	0.0548 ± 0.0026
χ^2	65.7	87.1
$n_{\rm dof}$	64	67
S	1.0000 ± 0.0005	1.0000 ± 0.0004
$R_{u/d}$	1.0976 ± 0.0354	1.1168 ± 0.0354
P_V^d	0.5575 ± 0.0375	0.5402 ± 0.0355
γ_s	0.1881 ± 0.0103	0.1851 ± 0.0101
γ_s^*	0.2311 ± 0.0346	0.2313 ± 0.0346

D factorias | | ED | DIC | DUD | m

- Perfect consistency for constrained S
- Tension for fixed e^+e^- charm x-sections (consequence of $S = 0.929 \pm 0.026$ at LEP)

Results: global combination, pp charm x-sections

Correlation matrix for FF

	D^{*+}	D^{*0}	D_{s}^{*+}	D^+	D^0	D_s^+	Λ_c^+
D^{*+}	1.00	-0.02	-0.02	-0.08	0.19	-0.07	-0.12
D^{*0}	-0.02	1.00	0.02	-0.07	0.07	0.01	-0.01
D_{s}^{*+}	-0.02	0.02	1.00	-0.05	-0.07	0.23	-0.01
D^+	-0.08	-0.07	-0.05	1.00	-0.66	-0.19	-0.19
D^0	0.19	0.07	-0.07	-0.66	1.00	-0.32	-0.41
D_s^+	-0.07	0.01	0.23	-0.19	-0.32	1.00	-0.07
Λ_c^+	-0.12	-0.01	-0.01	-0.19	-0.41	-0.07	1.00

Fitted charm x-sections in pp

\sqrt{s} ,	p_T	$y \text{ or } \eta$	Fit result	Original
TeV	range,	range	$\sigma(pp \rightarrow c),$	$\sigma(pp \rightarrow c)$,
	GeV		$\mu \mathrm{b}$	μb
7	[0, 8]	$y \in [2, 4.5]$	2675 ± 202	2838 ± 268 19
13	[1, 8]	$y \in [2, 4.5]$	4174 ± 338	4300 ± 356 20
13	[0, 8]	$y\!\in\![2,4.5]$	5269 ± 292	5880 ± 482 20
2.76	[2, 12]	y < 0.5	229 ± 67	
7	[2, 12]	y < 0.5	434 ± 84	
7	[3.5, 20]	$ \eta < 2.1$	1399 ± 141	

Improved charm x-sections ratios

 $R_{13/7}=1.97\pm0.18$ differs by 2.7σ from theory prediction $R_{13/7}({\rm th})=1.39^{+0.12}_{-0.29}$ [arXiv:1506.08025] (based on PDF fits with 7 TeV data)

	Average (10^{-2})
$f(c \to D_1^+)$	$4.60^{+2.69}_{-1.82}$
$f(c \to D_2^{*+})$	$3.20^{+0.94}_{-0.82}$
$f(c \to D_1^0)$	2.97 ± 0.38
$f(c \to D_2^{*0})$	3.94 ± 0.68
$f(c \to D_{s1}^+)$	1.09 ± 0.14
γ_{s1}	$28.7^{+8.0}_{-10.9}$

- ZEUS, OPAL and ALEPH data have been used
- The strangeness-suppression factor for $L = 1, J = 1^+$ charm mesons is calculated neglecting $D(2430)^0$ contribution and assuming D_1^+ is 1^+ state:

$$\gamma_{s1} \approx \frac{2f(c \to D_{s1}^+)}{f(c \to D_1^0) + f(c \to D_1^+)}$$

• First combinarion of FF for excited charm hadrons

Summary

Summary

- Summary of measurements of the fragmentation of charm quarks into a specific charm hadron is given
- Measurements in different production regimes agree within uncertainties, supporting the hypothesis of fragmentation universality
- Hypothesis that the sum of known weakly decaying charm hadrons FF is equal to 1 is checked to hold within 3 σ using the e^+e^- data
- Averages have significantly reduced uncertainties compared to individual measurements
- The application of the obtained values can significantly reduce uncertainties in future analyses and already published results

Acknowledgements

- Thanks to Erich Lohrmann for his major contribution to the development of the paper
- Thanks to Uri Karshon and Stefan Kluth for useful discussions and help in the work with the bibliography
- Thanks to Alexander Glazov and Ian Brock for the critical reading of the manuscript and useful suggestions on text improvement

BACKUP

BACKUP. Restricted phase space treatment (1)

The full x-section of a charm hadron, $\sigma(H)_{\in v}$ can be split into x-section of direct production $\sigma(H)_{\text{dir}, \in v}$ and the contribution from the decays of heavier charm states H^* , $\sigma(H)_{\text{decays}, \in v}$:

$$\sigma(H)_{\in v} = \sigma(H)_{\mathsf{dir}, \in v} + \sigma(H)_{\mathsf{decays}, \in v} = \sigma(H)_{\mathsf{dir}, \in v} + \sum_{all \ H^*} \sigma(H^*) \mathcal{B}(H^* \to H) k_{H^* \to H},$$

where $k_{H^*\to H}<1$ is a fraction of $H^*\to H$ decays with H in v. With the assumptions above, we have the equations:

Assuming $\sigma(H)_{\operatorname{dir}, \in v} = \sigma(c)_{\in v} f(c \to H)_{\operatorname{dir}}$ and introducing $\kappa = k\sigma(c)/\sigma(c)_{\in v}$ we have:

In the full kinematical space:

In general, to solve the system the measurements of D^{*0} production are needed. However, these can be avoided with an assumption of isospin invariance:

$$\frac{f(c \to D^+)_{\rm dir}}{f(c \to D^0)_{\rm dir}} = \frac{f(c \to D^{*+})_{\rm dir}}{f(c \to D^{*0})_{\rm dir}}$$

The last two systems are the working equations for the calculation of the charm fragmentation fractions from the cross-section measurements in the restricted phase space.

BACKUP. Predictions for charm production at B-factories (1)

The total cross-section of quark q production in e^+e^- collisions at energies $2M(q)\ll \sqrt{s}\ll M(Z)$ can be given as

$$\sigma(e^+e^- \to q) = 2\sigma(e^+e^- \to l^+l^-) \sum_{\text{colours}} v_q^2 r_q, \tag{1}$$

where v_q is the vector electromagnetic coupling of the quark q (i.e. charge), $r_q(s)$ are the correction coefficients with higher order QCD corrections and

$$\sigma(e^+e^- \to l^+l^-) = 4\alpha^2(s)\pi/3s \tag{2}$$

is the total cross-section of massless charged lepton pair production. In this work, the calculations of the $r_q(s)$ were done according to Ref. [Chetyrkin 2000] at the reference energy of $\sqrt{s} = 10.5$ GeV and assuming the c quark is the heavy one. The constants used for the calculations in Eq.1 and Eq.2 are the strong coupling $\alpha_s(\sqrt{s} = 10.5 \text{ GeV}) = 0.172$ [Chetyrkin 2000], the $\overline{\text{MS}}$ charm-quark mass $m_c(\sqrt{s} = 10.5 \text{ GeV}) = 0.74$ GeV [Chetyrkin 2000] and the electromagnetic coupling $\alpha(\sqrt{s} = 10.5 \text{ GeV}) = 1/132.0$ (calculated according to [Altarelli 1989, Burkhardt 1989] as implemented in [Harris 1997]). The uncertainties on the given values are negligible. The result of the calculations is $\sigma(e^+e^- \rightarrow c, \sqrt{s} = 10.5 \text{ GeV}) = 2399.23$ nb.

BACKUP. Predictions for charm production at B-factories (2)

To verify the calculations, Eq.1 can be rewritten as

$$\sigma(e^+e^- \to c) = 2\sigma(e^+e^- \to l^+l^-)R_cR_{\rm had},$$

where the quantities

$$R_{\mathsf{had}} = \frac{\sigma(e^+e^- \to \mathsf{hadrons})}{\sigma(e^+e^- \to l^+l^-)} = \sum_{u,d,s,c} \sum_{\mathsf{c \, olours}} v_q^2 r_q = 3.5239$$

and

$$R_c = \frac{\sigma(e^+e^- \to c\bar{c})}{\sigma(e^+e^- \to \text{hadrons})} = \frac{\sum_{\text{colours}} v_c^2 r_c}{\sum_{u,d,s,c} \sum_{\text{colours}} v_q^2 r_q} = 0.4012$$

can be compared with the existing measurements and predictions. It was found that $R_{\rm had}$ is in agreement with the direct measurement from CLEO below $\sqrt{s}=10.56~{\rm GeV}$ $R_{\rm had, CLEO}=3.591\pm0.003\pm0.067\pm0.049~[{\rm Besson}~2007]$ and R_c is in agreement with the CLEO Monte-Carlo based estimation $R_{\rm c,CLEO}=0.37\pm0.05~[{\rm Bortoletto}~1988].$ For all the theoretically calculated values, the uncertainties of calculations are negligible.

The theoretically calculated value that is used, $\frac{\Gamma(Z \to c\bar{c})}{\Gamma(Z \to \text{hadrons})} = 0.17223 \pm 0.00001 \text{ [Freitas 2014], is in agreement with the experimental world average } 0.1721 \pm 0.003 \text{ [PDG].}$