Higgs physics at LHeC and FCC-he

DIS2016, DESY, 12th apr 2016

Olaf Behnke (DESY)

Focusing on new study results since DIS2015

All signal cross sections and signal/background simulations based on specific MadGraph implementations

LHeC and FCC-he

e- accelerator = recirculator with energy recovery

ep Collider	LHeC	FCC-he		
Ер	7 TeV	50 TeV		
Ee	60 GeV	60 GeV		
L/10 ³³ cm ⁻² s ⁻¹	16	10		
∫Ldt (10 y)	1000 fb ⁻¹	600 fb ⁻¹		

Higgs physics potential at ep colliders

Indirect

 ➢ Inclusive DIS and jet measurements at LHeC constrain PDFs and α_s → help precision Higgs measurements at LHC
 – not covered in this talk – see Uta Klein, DIS2015, Dallas ep Higgs "Facility" @ 1ab⁻¹

Тс	otal event rat	¹ . √s= 1.3 TeV				√s= 3.5 TeV				
	Higgs in e^-p		CC - LHeC		NC -	NC - LHeC		CC - FHeC		
	Polarisation			-0.8		-0.8		-0.8		
	Luminosity [ab ⁻¹]		1			1		5	Uta Klein,	
	Cross Sectio	n [fb]		196 25			850			
	Decay B	Fraction		N_{CC}^{H}		N_{NC}^{H}		N_{CC}^{H}		
	$H ightarrow b\overline{b}$	0.577		13 100		13 900	Τ	$2\ 450\ 000$		
	$H \to c\overline{c}$	0.029		$5\ 700$		700		$123\ 000$		
	$H \to \tau^+ \tau^-$	0.063		$12 \ 350$		1 600	T	$270\ 000$		
	$H ightarrow \mu \mu$	0.00022		50		5		1 000		
	$H \rightarrow 4l$	0.00013		30		3		550		
	$H \rightarrow 2l 2 \nu$	0.0106		$2\ 080$		250		45000		
	H ightarrow gg	0.086		16 850		$2\ 050$		365000		
	$H \rightarrow WW$	0.215		42 100		$5\ 150$		915 000		
	$H \rightarrow ZZ$	0.0264		$5\ 200$		600		110 000		
	$H ightarrow \gamma \gamma$	0.00228		450		60		10 000		
	$H ightarrow Z \gamma$	0.00154		300		40		6 500		

New: Delphes detector simulation \rightarrow track impact parameters, etc.

Uta Klein, LHeC workshop 24-26 June 2015, Chavannes

(

$H \rightarrow bb$, simulated Dijet Mass: two jets with lowest η

 \rightarrow Train BDT on many kinematic + lifetime tag variables

Update of $H \rightarrow$ bb results

Update of $H \rightarrow cc$ results

- → k(Hcc) = 7% for 1000 fb⁻¹
- → Clear potential to measure Hcc at LHeC
- \rightarrow Ongoing optimisation, e.g. using R=0.7 jets to increase statistics

Higgs Couplings at HL-LHC + LHeC running simultaneously

Invisible Higgs@LHeC Higgs → 'dark' sectors

Y.-L. Tang et al., arXiV: 1508.01095

Double Higgs Production at FCC-he

SM diagrams

→ Expect high sensitivity to BSM contributions (anomalous couplings)

Kumar et al: focus on $HH \rightarrow bbbb decay channel$

Double Higgs Production at FCC-he: Observable

M. Kumar et al., arXiV: 1509.04016

Double Higgs Production at FCC-he: Limits

M. Kumar et al., arXiV: 1509.04016

- LHeC and Fcc-he → provide important information on Higgs, complementary to other machines, e.g.
 - $H \rightarrow bb$, $H \rightarrow cc$ at LHeC
 - HH production at FCC-he → anomalous HHH and HHWW couplings
- We have a fantastic machine at work the LHC it would be a pity not to exploit the greatly enhanced physics potential by adding an electron beam to the HL-LHC complex at CERN

For further material see e.g. LHeC workshop, Chavannes, 24-26 june 2015 htpps://indico.cern.ch/event/356714

Backup slides

Max Klein

HIGGS PHYSICS AT THE LHEC SUMMARY

HL LHC + LHeC

HL LHC

- GLUON FUSION AND W FUSION \Rightarrow PDF+ α_s UNCERTAINTY REMOVED (hatched bands) Turn LHC into precision
- *H*bb MEASURED TO PERCENTAGE PRECISION; Higgs facility: add PDFs add ep channels (bb,cc.)
- $\tau \tau$ AND $\bar{c}c$ ALSO MEASURABLE

S.Forte ECFA 9/15

Baseline Detector Design A. Polini and P. Kostka

