Central Exclusive Production at LHCb

Ronan McNulty (UCD Dublin)

DIS2016 Hamburg , 11-15 April 2016.

<u>Outline</u>

LHCb: very well suited to study CEP

- Trigger
- New Forward Scintillation Counters
- <u>Past</u>:
 - Overview of measurements at 7 TeV

• Present:

Current measurements at 13 TeV

• Future

Plans for future analyses.

The LHCb detector

VELO sub-detector

Use of backwards tracks

Use of backwards tracks

Trigger on Low multiplicity events

• At 7 TeV

• Muons > 400 MeV. Dimuon masses down to ω with pT=0

- At 13 TeV
 - Hadrons with SumEt>500 MeV.
 - Two EM object > 400 MeV
 - Single photons or electrons > 800 MeV

High luminosity requires multiple proton interactions per beam-crossing.

Number of interactions (N) /crossings, distributed Average #interactions

$$f(N) = \frac{e^{\mu} \mu^{N}}{N!}$$

For LHCb in 2011, $\overline{\mu}$ =1.4 (25% of interactions useful)

For LHCb in 2015, $\bar{\mu}$ =1.08 (35% interactions useful)

<u>Central Exclusive Production of</u> J/ ψ and ψ (2S) mesons

Data-taking year	Energy	Integrated Luminosity	Paper
2010	7 TeV	37pb ⁻¹	JPG 40 (2013) 045001
2011	7 TeV	930pb ⁻¹	JPG 41 (2014) 055002

Central Exclusive Production of Y(1S), Y(2S), Y(3S) mesons

Data-taking year	Energy	Integrated Luminosity	Paper
2011	7 TeV	945 pb ⁻¹	JHEP 09 (2015) 084
2012	8 TeV	1985 pb ⁻¹	

HERA vector meson photo-production results

J/ψ /χc

Experiment

Theory

J/ψ J/ψ

Future

Non-resonant background very small

J/ψ /χc

Experiment

Theorv

J/w J/w

Future

Theory Experiment J/ψ /χc Y J/ψ J/ψ Future Non-resonant background relatively larger

Future

Inelastic background

Signal

Background

Inelastic background $\psi(2S)$

Differential cross-sections J/ψ

S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive J/ψ and Υ production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.

Differential cross-sections $\psi(2S)$

Y Cross-section

Good agreement with all theory estimates

HERA measured power-law: $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \,\text{GeV})^{0.67} \,\text{nb}$ Use this for one cross-section on RHS – LHCb measure the other solution Photo-production cross-section

Derived photo-production cross-section

Double Charmonia

An example of the unexpected, visible when you have very clean signals....

Data-taking year	Energy	Integrated Luminosity	Paper
2011	7 TeV	945 pb ⁻¹	JPG 40 (2013) 045001
2012	8 TeV	1985 pb ⁻¹	

Select 4-muon exclusive events

Selection requirement:

Require precisely 4 tracks, at least three identified as muons

<u>Cross-section</u> <u>results</u>

$$\begin{array}{ll} \sigma^{J\!/\psi\,J\!/\psi} &= 58 \pm 10({\rm stat}) \pm 6({\rm syst})\,{\rm pb}, \\ \sigma^{J\!/\psi\,\psi(2S)} &= 63^{+27}_{-18}({\rm stat}) \pm 10({\rm syst})\,{\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 237\,{\rm pb}, \\ \sigma^{\chi_{c0}\chi_{c0}} &< 69\,{\rm nb}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 45\,{\rm pb}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 141\,{\rm pb}, \end{array}$$

Comparison to theory

LHCb estimate exclusive cross-section. **24+-9 pb**

Harland-Lang, Khoze, Ryskin: (arXiv: 1409.4785) **2-7 pb**

High rapidity shower counters for LHCb

Increase rapidity gap with scintillators in forward region

Scintillators and PMTs

Backward Stations Installation finished in 2014 -114m -19.7m -7.5m

Forward Stations

~200 pb⁻¹ of data available with stable calibrations

<u>J/ψ analysis at 13 TeV</u>

Essentially same prescription as 7 TeV but include Herschel as veto on activity Increases rapidity gap from 5 units to 11.

J/ψ analysis at 13 TeV

Approximate halving in background coming from proton dissociation below 0.8 GeV²

Future Analyses

Priority: χc production

- Difficult resolving 3 states
- Finding dissociative contribution
- Look in hadronic modes
- Use Herschel to understand proton dissociation

3.2

3.4

ChiC Mass (GeV/c²)

3.8

3.6

Future Analyses

- Low mass spectroscopy using ππ and KK modes.
- Hadronic triggers allow us almost go down to $\pi\pi$ threshold.
- Very good particle ID
- Some hope for ηη using EM triggers
- DD modes possible using hadronic triggers
- Might be good laboratory to study exotics

Conclusions

- Measurements to date use muon final states
- Identified biggest obstacle to progress and installed new detector
- Calibration and understanding of Herschel improving weekly.
- J/ ψ 13 TeV result will be available shortly with a lot more to follow.