Inclusive four-jet production: a study of Multi-Regge kinematics and BFKL observables

Francesco Giovanni Celiberto

francescogiovanni.celiberto@fis.unical.it

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI

Università della Calabria & INFN-Cosenza Italy

FISICA

Instituto de Física Teórica UAM/CSIC Spain

based on

[F. Caporale, F.G. C., G. Chachamis, A. Sabio Vera (2016)]

published in Eur. Phys. J. C76 (2016) 3

arXiv:1601.07847

DIS 2016: 24th International Workshop on Deep Inelastic Scattering and Related Subjects April 11st - 15th, 2016 DESY Hamburg

INFN

Outline

- Motivation

2 Four-jet production

- Four-jet cross section
- New BFKL observables

Results

Numerical analysis

2/21

Outline

1 Introduction Motivation

2 Four-jet production • Four-jet cross section New BFKL observables

Numerical analysis

3/21

Introduction		
0000		
Motivation		
Motivatio	n	

So far, search for BFKL effects had these general drawbacks:

- $\diamond~$ too low \sqrt{s} or rapidity intervals among tagged particels in the final state
- too inclusive oblservables, other approaches can fit them

Advent of LHC:

- $\rightarrow\,$ higher energies, larger rapidity gaps, abundance of data produced and being produced
- $\rightarrow~$ unique opportunity to disentangle BFKL applicability region
- $\rightarrow~$ new, suitable BFKL observables needed

Last years: Mueller-Navelet jets \rightarrow theory vs experiment

[B. Ducloué, L. Szymanowski, S. Wallon (2014)] [F. Caporale, D.Yu Ivanov, B. Murdaca, A. Papa (2014)]

Introduction		
00000		
Motivation		

Mueller–Navelet jets

...large jet transverse momenta: $\vec{k}_{J,1}^2 \sim \vec{k}_{J,2}^2 \gg \Lambda_{\text{QCD}}^2$...large rapidity gap between jets (high energies) $\Rightarrow \Delta y = \ln \frac{x_{J,1} x_{J,2} s}{|\vec{k}_{J,2}| |\vec{k}_{J,2}|}$

Results 00000

Looking for new observables

- BFKL feature: factorization between transverse and longitudinal (rapidities) degrees of freedom
- Usual "growth with energy" signal mainly probes the longitudinal degrees of freedom
- Mueller–Navelet correlation momenta mainly probe one of the transverse components, the azimuthal angles
- ! We would like to study observables for which the p_T (any p_T along the BFKL ladder) enters the game...
 - ...to probe not only the general properties of the BFKL ladder, but also "to peek into the interior"...
 - ♦ ...by studying azimuthal decorrelations where the p_T of extra particles introduces a new dependence...

...multi-jet production!

[R. Maciula, A. Szczurek (2014, 2015) K. Kutak, R. Maciula, M. Serino, A. Szczurek, A. van Hameren (2016)

Results 00000

Looking for new observables

- BFKL feature: factorization between transverse and longitudinal (rapidities) degrees of freedom
- Usual "growth with energy" signal mainly probes the longitudinal degrees of freedom
- Mueller–Navelet correlation momenta mainly probe one of the transverse components, the azimuthal angles
- ! We would like to study observables for which the p_T (any p_T along the BFKL ladder) enters the game...
 - ...to probe not only the general properties of the BFKL ladder, but also "to peek into the interior"...
 - ♦ ...by studying azimuthal decorrelations where the p_T of extra particles introduces a new dependence...

...multi-jet production!

[R. Maciula, A. Szczurek (2014, 2015)] [K. Kutak, R. Maciula, M. Serino, A. Szczurek, A. van Hameren (2016)]

Introduction		
00000		
Motivation		

Three- and four-jet production

 [F. Caporale, G. Chachamis, B. Murdaca, A. Sabio Vera (2015)]
 [F. Caporale, F.G. C., G. Chachamis, A. Sabio Vera (2016)]

 [F. Caporale, F.G. C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (2016)]
 [F. Caporale, F.G. C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (2016)]

7/21

Outline

- Four-jet production
 Four-jet cross section
 New BFKL observables
 - 3 Results• Numerical analysis

	Four-jet production		
00000	000000	00000	
Four-jet cross section			

The partonic cross section

Starting point: differential partonic cross-section (no PDFs)

$$\frac{d^{6}\sigma^{4-\text{jet}}\left(\vec{k}_{A},\vec{k}_{B},Y_{A}-Y_{B}\right)}{d^{2}\vec{k}_{1}dy_{1}d^{2}\vec{k}_{2}dy_{2}} = \frac{\bar{\alpha}_{s}\left(\mu_{R}\right)^{2}}{\pi^{2}k_{1}^{2}k_{2}^{2}}\int d^{2}\vec{p}_{A}\int d^{2}\vec{p}_{B}\int d^{2}\vec{p}_{1}\int d^{2}\vec{p}_{2}$$
$$\delta^{(2)}\left(\vec{p}_{A}+\vec{k}_{1}-\vec{p}_{1}\right)\delta^{(2)}\left(\vec{p}_{B}-\vec{k}_{2}-\vec{p}_{2}\right)$$
$$\varphi\left(\vec{k}_{A},\vec{p}_{A},Y_{A}-y_{1}\right)\varphi\left(\vec{p}_{1},\vec{p}_{2},y_{1}-y_{2}\right)\varphi\left(\vec{p}_{B},\vec{k}_{B},y_{2}-Y_{B}\right)$$

- Multi-Regge kinematics rapidity ordering: Y_B < y₂ < y₁ < Y_A
- k_1^2 , k_2^2 lie above the experimental resolution scale
- φ is the LO BFKL gluon Green function

•
$$\bar{\alpha}_s = \alpha_s N_c / \pi$$

F.G. Celiberto

usive four-jet production: a study of Multi-Regge kinematics and BFKL observables April 12th.

April 12th, 2016

	Four-jet production	
	0000000	
Four-iet cross section		

A four-jet primitive lego-plot

10/21

Outline

2 Four-jet production • Four-jet cross section

- New BFKL observables
- - Numerical analysis

	Four-jet production	
	00000000	
New BFKL observables		

First step - A la Mueller–Navelet observables

Integrate over the azimuthal angles of the two central jets and over the difference in azimuthal angle between the two forward jets $\Delta \theta = \vartheta_A - \vartheta_B - \pi$...

 \rightarrow ...to define:

$$\int_{0}^{2\pi} d\Delta\theta \cos(M\Delta\theta) \int_{0}^{2\pi} d\vartheta_{1} \int_{0}^{2\pi} d\vartheta_{2} \frac{d^{6}\sigma^{4-\text{jet}}\left(\vec{k}_{A},\vec{k}_{B},Y_{A}-Y_{B}\right)}{dk_{1}dy_{1}d\vartheta_{1}dk_{2}d\vartheta_{2}dy_{2}}$$

$$= \frac{4\bar{\alpha}_{s}(\mu_{R})^{2}}{k_{1}k_{2}} \left(e^{iM\pi}\tilde{\Omega}_{M}(\vec{k}_{A},\vec{k}_{B},Y_{A},Y_{B},\vec{k}_{1},\vec{k}_{2},y_{1},y_{2}) + c.c.\right)$$

where

$$\begin{split} \tilde{\Omega}_{n}(\vec{k_{A}},\vec{k_{B}},Y_{A},Y_{B},\vec{k_{1}},\vec{k_{2}},y_{1},y_{2}) &= \int_{0}^{+\infty} dp_{A} p_{A} \int_{0}^{+\infty} dp_{B} p_{B} \int_{0}^{2\pi} d\phi_{A} \int_{0}^{2\pi} d\phi_{B} \\ \frac{(p_{A}+k_{1}e^{-i\phi_{A}})^{n} (p_{B}-k_{2}e^{i\phi_{B}})^{n}}{\sqrt{(p_{A}^{2}+k_{1}^{2}+2p_{A}k_{1}\cos\phi_{A})^{n}} \sqrt{(p_{B}^{2}+k_{2}^{2}-2p_{B}k_{2}\cos\phi_{B})^{n}}} \\ \varphi_{n} \left(|\vec{k_{A}}|,|\vec{p_{A}}|,Y_{A}-y_{1}\right) \varphi_{n} \left(|\vec{p_{B}}|,|\vec{k_{B}}|,y_{2}-Y_{B}\right) \\ \varphi_{n} \left(\sqrt{p_{A}^{2}+k_{1}^{2}+2p_{A}k_{1}\cos\phi_{A}},\sqrt{p_{B}^{2}+k_{2}^{2}-2p_{B}k_{2}\cos\phi_{B}},y_{1}-y_{2}\right) \\ \text{and} \end{split}$$

$$\varphi_n\left(|\boldsymbol{p}|,|\boldsymbol{q}|,\boldsymbol{Y}\right) = \int_0^\infty d\nu \cos\left(\nu \ln \frac{p^2}{q^2}\right) \frac{e^{\tilde{\alpha}_s \chi_{|n|}(\nu)\boldsymbol{Y}}}{\pi^2 \sqrt{p^2 q^2}},$$

F.G. Celiberto

Inclusive four-jet production: a study of Multi-Regge kinematics and BFKL observables

April 12th, 2016

	Four-jet production	
	00000000	
New BFKL observables		

First step - A la Mueller–Navelet observables

Integrate over the azimuthal angles of the two central jets and over the difference in azimuthal angle between the two forward jets $\Delta \theta = \vartheta_A - \vartheta_B - \pi$...

 \rightarrow ...to define:

$$\int_{0}^{2\pi} d\Delta\theta \cos(M\Delta\theta) \int_{0}^{2\pi} d\vartheta_1 \int_{0}^{2\pi} d\vartheta_2 \frac{d^6 \sigma^{4-jet} \left(\vec{k}_A, \vec{k}_B, Y_A - Y_B\right)}{dk_1 dy_1 d\vartheta_1 dk_2 d\vartheta_2 dy_2}$$
$$= \frac{4\bar{\alpha}_s \left(\mu_R\right)^2}{k_1 k_2} \left(e^{iM\pi} \tilde{\Omega}_M(\vec{k}_A, \vec{k}_B, Y_A, Y_B, \vec{k}_1, \vec{k}_2, y_1, y_2) + c.c.\right)$$

Associated experimental observable:

$$\langle \cos(\mathcal{M}(\vartheta_A - \vartheta_B - \pi)) \rangle$$

$$= \frac{\int_0^{2\pi} d\Delta\theta \cos(\mathcal{M}\Delta\theta) \int_0^{2\pi} d\vartheta_1 \int_0^{2\pi} d\vartheta_2 \frac{d^6 \sigma^{4-\mathrm{jet}}}{d\kappa_1 dy_1 d\vartheta_1 d\kappa_2 d\vartheta_2 dy_2}}{\int_0^{2\pi} d\Delta\theta \int_0^{2\pi} d\vartheta_1 \int_0^{2\pi} d\vartheta_2 \frac{d^6 \sigma^{4-\mathrm{jet}}}{d\kappa_1 dy_1 d\vartheta_1 d\kappa_2 d\vartheta_2 dy_2}}$$

Then, take the ratios:

$$\mathcal{R}_{N}^{M} = \frac{\langle \cos(M(\vartheta_{A} - \vartheta_{B} - \pi)) \rangle}{\langle \cos(N(\vartheta_{A} - \vartheta_{B} - \pi)) \rangle}$$

F.G. Celiberto

Inclusive four-jet production: a study of Multi-Regge kinematics and BFKL observables

April 12th, 2016

	Four-jet production		
00000	0000000	00000	
New BEKL observables			

Second step - Generalized azimuthal coefficients

By far more interesting, it is to integrate over all angles after using the projections on the three azimuthal angle differences indicated below...

$$\begin{array}{l} \rightarrow \quad \text{...to define:} \\ \mathcal{C}_{MNL} = \int_{0}^{2\pi} d\vartheta_{A} \int_{0}^{2\pi} d\vartheta_{B} \int_{0}^{2\pi} d\vartheta_{1} \int_{0}^{2\pi} d\vartheta_{2} \ \cos\left(M\left(\vartheta_{A} - \vartheta_{1} - \pi\right)\right) \\ \cos\left(N\left(\vartheta_{1} - \vartheta_{2} - \pi\right)\right) \cos\left(L\left(\vartheta_{2} - \vartheta_{B} - \pi\right)\right) \frac{d^{6}\sigma^{4-\text{jet}}\left(\vec{k}_{A}, \vec{k}_{B}, Y_{A} - Y_{B}\right)}{dk_{1}dy_{1}d\vartheta_{1}dk_{2}d\vartheta_{2}dy_{2}} \\ = \frac{2\pi^{2}\tilde{\alpha}_{s}\left(\mu_{R}\right)^{2}}{k_{1}k_{2}} \left(-1\right)^{M+N+L} \left(\tilde{\Omega}_{M,N,L} + \tilde{\Omega}_{M,N,-L} + \tilde{\Omega}_{M,-N,L} + \tilde{\Omega}_{M,-N,-L} + \tilde{\Omega}_{-M,-N,L} + \tilde{\Omega}_{-M,-N,-L}\right) \end{array}$$

with

$$\begin{split} \tilde{\Omega}_{m,n,l} &= \int_{0}^{+\infty} dp_{A} \, p_{A} \int_{0}^{+\infty} dp_{B} \, p_{B} \int_{0}^{2\pi} d\phi_{A} \int_{0}^{2\pi} d\phi_{B} \\ &\frac{e^{-im\phi_{A}} \, e^{il\phi_{B}} \, \left(p_{A}e^{i\phi_{A}} + k_{1}\right)^{n} \, \left(p_{B}e^{-i\phi_{B}} - k_{2}\right)^{n}}{\sqrt{\left(p_{A}^{2} + k_{1}^{2} + 2p_{A}k_{1}\cos\phi_{A}\right)^{n}} \, \sqrt{\left(p_{B}^{2} + k_{2}^{2} - 2p_{B}k_{2}\cos\phi_{B}\right)^{n}}} \\ \varphi_{m} \left(|\vec{k}_{A}|, |\vec{p}_{A}|, Y_{A} - y_{1}\right) \varphi_{l} \left(|\vec{p}_{B}|, |\vec{k}_{B}|, y_{2} - Y_{B}\right)}{\varphi_{n} \left(\sqrt{p_{A}^{2} + k_{1}^{2} + 2p_{A}k_{1}\cos\phi_{A}}, \sqrt{p_{B}^{2} + k_{2}^{2} - 2p_{B}k_{2}\cos\phi_{B}}, y_{1} - y_{2}\right)} \end{split}$$

F.G. Celiberto

lusive four-jet production: a study of Multi-Regge kinematics and BFKL observab

	Four-jet production	
	0000000	
New BFKL observables		

Second step - Generalized azimuthal correlations

By far more interesting, it is to integrate over all angles after using the projections on the three azimuthal angle differences indicated below...

 \rightarrow ...to define:

$$\begin{aligned} \mathcal{C}_{MNL} &= \int_{0}^{2\pi} d\vartheta_A \int_{0}^{2\pi} d\vartheta_B \int_{0}^{2\pi} d\vartheta_1 \int_{0}^{2\pi} d\vartheta_2 \ \cos\left(M\left(\vartheta_A - \vartheta_1 - \pi\right)\right) \\ &\cos\left(N\left(\vartheta_1 - \vartheta_2 - \pi\right)\right) \cos\left(L\left(\vartheta_2 - \vartheta_B - \pi\right)\right) \frac{d^6 \sigma^{4-\text{jet}}\left(\vec{k}_A, \vec{k}_B, Y_A - Y_B\right)}{dk_1 dy_1 d\vartheta_1 dk_2 d\vartheta_2 dy_2} \end{aligned}$$

Main observables: generalized azimuthal correlation momenta

$$\mathcal{R}_{PQR}^{\textit{MNL}} = \frac{\textit{C}_{\textit{MNL}}}{\textit{C}_{PRQ}} = \frac{\langle \cos(\textit{M}(\vartheta_{A} - \vartheta_{1} - \pi)) \cos(\textit{N}(\vartheta_{1} - \vartheta_{2} - \pi)) \cos(\textit{L}(\vartheta_{2} - \vartheta_{B} - \pi)) \rangle}{\langle \cos(\textit{P}(\vartheta_{A} - \vartheta_{1} - \pi)) \cos(\textit{Q}(\vartheta_{1} - \vartheta_{2} - \pi)) \cos(\textit{R}(\vartheta_{2} - \vartheta_{B} - \pi)) \rangle}$$

00000
Numerical analysis

Outline

IntroductionMotivation

Pour-jet production
 Four-jet cross section
 New BFKL observables

ResultsNumerical analysis

Results 00000

Observables and kinematics

• Observables:

$$\mathcal{R}_{PQR}^{MNL} = \frac{C_{MNL}}{C_{PRQ}} = \frac{\langle \cos(M(\vartheta_A - \vartheta_1 - \pi))\cos(N(\vartheta_1 - \vartheta_2 - \pi))\cos(L(\vartheta_2 - \vartheta_B - \pi))\rangle}{\langle \cos(P(\vartheta_A - \vartheta_1 - \pi))\cos(Q(\vartheta_1 - \vartheta_2 - \pi))\cos(R(\vartheta_2 - \vartheta_B - \pi))\rangle}$$

- $\diamond~$ remove the contribution from the zero conformal spin
 - $\stackrel{to}{\rightarrow}$ drastically reduce the dependence on collinear configurations study \mathcal{R}_{PQR}^{MNL} with integer *M*, *N*, *L*, *P*, *Q*, *R* > 0

• Kinematic settings:

- ◇ 1. k_A = 40 GeV; k_B = 50 GeV; quasi symmetric
 2. k_A = 30 GeV; k_B = 60 GeV; different
 ◇ Y_A y₁ = y₁ y₂ = y₂ Y_B = 3; Y_A Y_B = 9
- $\diamond~$ 20 GeV $~\leq~$ k_1 , $k_2~\leq~$ 80 GeV

• Numerical tools:

$\diamond\,$ Fortran & Mathematica

	Results	
	00000	
Numerical analysis		
\mathcal{C}_{MNL} vs $k_{1,2}$		

18/21

	Results	
	00000	
Numerical analysis		
0		

of Multi-Regge kinematics and BEK

19/21April 12th, 2016

F.G. Celiberto

luction: a study of Multi-Regge kinematics and BEKL observable Inclusive four-jet

21/21

Conclusions...

Study of process with four tagged jets to propose new, more exclusive, BFKL observables

- LLA framework, taking ratios of correlation functions to minimize the influence of higher order corrections
 - $\Rightarrow \mathcal{R}_{PQR}^{MNL}$ exhibit interesting patterns:
 - similar to oscillation modes of a two-dimensional membrane
 - changes of sign in the denominator coefficient give ries to singularities

...Outlooks

 Give theoretical predictions on hadronic level by introducing PDFs in the jet vertices, using the strong coupling running and match the kinematical cuts of LHC
 [F. Caporale, F.G. C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (in progress)

Inclusive four-jet production: a study of Multi-Regge kinematics and BEKL observables April 12th, 2016

- ◊ Perform a study in the NLA accuracy
- Comparison with BFKLex results and other Monte Carlo codes
- Comparison with analyses where the four-jet predictions stem from two independent gluon ladders
 IR Macinia A Systematic

[K. Kutak, R. Maciula, M. Serino, A. Szczurek, A. van Hameren (201

Conclusions...

Study of process with four tagged jets to propose new, more exclusive, BFKL observables

- LLA framework, taking ratios of correlation functions to minimize the influence of higher order corrections
 - $\Rightarrow \mathcal{R}_{POR}^{MNL}$ exhibit interesting patterns:
 - similar to oscillation modes of a two-dimensional membrane
 - changes of sign in the denominator coefficient give ries to singularities

...Outlooks

- o Give theoretical predictions on hadronic level by introducing PDFs in the jet vertices, using the strong coupling running and match the kinematical cuts of LHC [F. Caporale, F.G. C., G. Chachamis, D. Gordo Gómez, A. Sabio Vera (in progress)]
- Perform a study in the NLA accuracy
- Comparison with BFKLex results and other Monte Carlo codes
- Comparison with analyses where the four-jet predictions stem from two \diamond independent gluon ladders [R. Maciula, A. Szczurek (2014, 2015)]

[K. Kutak, R. Maciula, M. Serino, A. Szczurek, A. van Hameren (2016)]

F.G. Celiberto

Inclusive four-jet production: a study of Multi-Regge kinematics and BEKL observables April 12th, 2016 21/21

Thanks for your attention!!

BACKUP slides

BACKUP slides An event with three tagged jets

$$Y_B < y_J < Y_A$$