CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE



#### Search for squark and gluino production in leptonic final states with the ATLAS detector

Sebastien Kahn on behalf of the ATLAS collaboration CPPM / IN2P3 – Aix-Marseille Université

Workshop on Deep-Inelastic Scattering and related DIS 2016





# SUSY search @13 TeV



#### 8 to 13 TeV cross section increase



12/04/2016

# Squarks & gluino searches General presentation

- General discriminant variables
  - ► Coloured sparticles → N<sub>jets</sub> / N<sub>b-jets</sub>
  - **R-parity conserving models** Massive non-interacting particle  $\rightarrow E_{T}^{miss}$
  - High gluino / squark masses  $\rightarrow m_{\text{eff}} = \sum p_T^{lep, jets} + E_T^{miss}$
- Background estimates
  - Irreducible background :
    - Predictions checked in Validation Regions
    - If dominant, normalized in Control Regions
  - Experimental Background :
    - Fake lepton / electron charge mis-ID / fake  $E_T^{miss}$
    - Data driven estimates



# Squarks & gluino searches With leptons

• **0 leptons :** Covered by Geert Jan Besjes (previous talk)



The complementarity of the final states allows to cover a large spectra of SUSY models

DIS 2016



# 1 lepton + E<sup>miss</sup> + jets Signal regions



- Two main channels are considered :
  - **Soft lepton :**  $6-7 < p_{T^{lep}} < 35 \text{ GeV}$ 
    - $\begin{array}{rl} & \textbf{Soft lepton 2-jets} \\ \to & \text{Very small } \Delta m(\widetilde{g}, \widetilde{\chi}^o_1) \end{array}$
    - $\begin{array}{ll} & \textbf{Soft lepton 5-jets} \\ \to & \text{Very small } \Delta m(\widetilde{\chi_1}^{\pm}, \widetilde{\chi}^0_1) \end{array}$
  - Hard lepton :  $p_{T^{lep}} > 35 \text{ GeV}$ 
    - − SR 6-jets → Small  $\Delta m(\tilde{g}, \tilde{\chi}^{0}_{1})$
    - SR 4-jets x-low
    - SR 5-jets
    - SR 4-jets x-high
- → Large gluino masses All  $m(\chi_1^{\ddagger})$  covered by the three SR
- Main backgrounds : *tt*, W+jets MC normalized with Control Regions

#### A complete set of six Signal Regions allows to cover all masses configurations





DIS 2016



# **1 lepton + E\_{T}^{miss} + jets Results & Interpretation**



• No significant excess observed :



• Exclusion set using simplified Models

• With 
$$x = \frac{m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^{0}}}{m_{\tilde{g}} - m_{\tilde{\chi}_1^{0}}} = \frac{1}{2}$$

• With 
$$m_{\chi_1^0} = 60 \, GeV$$

### Improvement of the exclusion limits with gluino excluded up to 1.6 TeV





# $Z \rightarrow II + E_T^{miss} + jets$ SR & Bkg estimation

rreducible



#### **Signal Region**



#### **Background estimation**

- Main background (~60%) : flavour symmetric
  - Sources : *tt* (70%), WW (20%), tW, Z → ττ
  - Estimated using eµ Control Regions
     Same definition as Signal Regions except larger m<sub>II</sub> window (more stats)

#### Z/y\*+jets bkg (~10%)

- ► Fake E<sub>T</sub><sup>miss</sup> due detector resolution
- detector resolution
   Data Driven estimate using E<sub>T</sub><sup>misss</sup> distribution from γ+jets events
- Other backgrounds :



MC only (Validation Regions for WZ / ZZ)



#### • Modest 2.2 $\sigma$ deviation ( $N_{ee}/N_{\mu\mu} = 10/11$ )



#### Exclusions set using simplified models

- ► m(χ̃°<sub>2</sub>) ~ 700 GeV
  - $\rightarrow\,$  gluino excluded up to 1.1 TeV
- $m(\tilde{\chi}^{\circ}_{2}) \sim 200 \text{ GeV}$  $\rightarrow$  gluino excluded up to 0.95 TeV
- Worse limits than expected because of the slight excess





### 2/ Same sign - 3 leptons Signal regions



#### • Low SM (mostly VV, *tt*V) allow to use loose kinematic requirements

- Access to the low Δm(x̃<sub>1</sub>°, g̃)
- Sensitivity to a large number of different SUSY processes





## 2/ same sign - 3 leptons Background estimation



- **Detector background :** Contribution of *tt* events due to
  - Fake and non-prompt leptons : light jet mis-ID, b/c quarks decays, γ conversion
    - Dominant source : b decays
    - Fully data driven estimate using the dynamic Matrix Method
  - Electron charge mis-measurement
    - Dominant Charge Flip source : hard brem y conversion
    - Data driven estimate : using  $Z \rightarrow ee$  events



- **Prompt background :** rare processes (*WZ*, *tt̄Z*, *tt̄W*)
  - MC only
    - Validation regions : dedicated to WZ,  $t\bar{t}Z$ ,  $t\bar{t}V$



Irreducible



W

W

900



700

12/04/2016

400

800

600

1000 geV]

ATLAS

√s=13 TeV, 3.2 fb<sup>-1</sup>

ma mu

800



## Stop search 1 lepton signal regions



- Final state close to the one from *t*t
  - Difficult to extract the signal from bkg
- 3 Signal Regions with exactly 1 lepton and different E<sub>T</sub><sup>miss</sup> requirements
  - Discrimination against W+jets and  $t\bar{t} \rightarrow 1I$ 
    - $-m_{\rm T}$  cut above  $m_{\rm W}$
    - At least 1 b-jet (for W+jet only)
  - Discrimination against  $t\bar{t} \rightarrow 2I$ 
    - At least 4 jets
    - asymmetric  $m_{T2}$
    - topness based  $t\bar{t}$  events  $\chi^2$  fit
  - Discrimination against multijets
    - $H_{T,sig}^{miss}$  based on the sum of the lepton and jet vectors and their resolution
  - Large radius jets used for boosted W or tops (NEW)





## Stop searches 2 leptons Signal regions



- Δm(t̃<sub>1</sub>, χ̃<sub>1</sub><sup>±</sup>) = 10 GeV
   → Soft *b*-jets
  - No (b-)jets requirements
- $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}^0_1) >> 1 \text{ GeV}$   $\rightarrow 2 \text{ boosted leptons & large } E_T^{miss}$ 
  - Discrimination against WW and  $t\bar{t}$ 
    - m<sub>T2</sub> > 145 GeV
  - Discrimination against Z/y+jets

$$- R1 = \frac{E_T^{miss}}{E_T^{miss} + p_T^{l_1} + p_T^{l_2} + p_T^{j_1} + p_T^{j_2}} > 0.3$$

- Z+jets / ZW background
  - Z mass veto for same flavour leptons



$$m_{T2} = \min_{q_T^{v_1} + q_T^{v_2} = p_T^{miss}} \{ max[m_T(p_T^{l_1}, q_T^{v_1}), m_T(p_T^{l_2}, q_T^{v_2})] \}$$





rreducible

**Detector bkg** 

# Stop searches background estimation

rreducible

**Detector bkg** 

 $N_{b-jets} = 0$ 



#### **Stop 1 lepton**

- Main background : *tt* and W+jets
  - Estimated using Control Regions defined reverting the m<sub>T</sub> and the am<sub>T2</sub> cut for different b-jet multiplicities



#### Multijets background

- Due Fake E<sub>T</sub><sup>miss</sup> and jets mis-identified as leptons
- Data driven estimation : fake factor Method
- Other backgrounds :
  - MC only

#### **Stop 2 lepton**

- Main background : VV and tt
  - Estimated using Control Regions
    - *tt* Control Region : m<sub>T2</sub> and R1 (<0.4) on eµ events</li>
    - − VV → *II*vv Control Region :  $m_{\parallel}$  on ee/µµ events with looser  $m_{T2}$
- Semi-letptonic *tt*, single top, W+jets
  - Due to fake and non-prompt leptons light jet mis-ID, b/c quarks decays, γ conversion
  - Data driven estimate using the dynamic Matrix Method
- Other backgrounds
  - MC Only



# Stop 1 lepton Results & Interpretation



- No significant excess observed
  - Largest deviation : 2.3σ in SR1



- Exclusion limits set using simplified models
  - ► Gluino decays with small  $\Delta m(\tilde{t}_{1,}\tilde{\chi}^{o}_{1})$ → Gluino excluded up to ~1.5 TeV
  - Stop pair production : excess in SR1
    - → Only exclude a small region at  $m(t_1) \sim 750 \text{ GeV}$





### Stop 2 leptons Results & Interpretation







#### Conclusions



- No significant excess in search for squarks and gluinos at 13 TeV
- Exclusions set beyond Run-1 limits, complementary with the 0 lepton searches https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults



#### Waiting eagerly for more data!

#### **Auxiliary material**





### Stop 1L search Background estimation



- Main backgrounds : single top, tt, W+jets
  - Estimated with MC nomalized in Control Regions defined reverting the m<sub>T</sub> and the am<sub>T2</sub> cut for different b-jet multiplicities
  - Estimation checked in Validation Regions
- Multijets
  - Sources :
    - Fake  $E_{T}^{miss}$
    - jets mis-identified as leptons
  - Data driven estimation : fake factor Method





### Back-up Summary plot



• All results in the gluino / neutralino plane Different processes considered







#### • Signal / Control Regions 1

| Common event selection                       |                                |                                                                              |                                        |  |  |
|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------|----------------------------------------|--|--|
| Trigger                                      | $E_{\rm T}^{\rm miss}$ trigger |                                                                              |                                        |  |  |
| Lepton                                       | exactly one signa              | l lepton $(e, \mu)$ , no additio                                             | onal baseline leptons.                 |  |  |
| Jets                                         | at least four signa            | al jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) $ | $  > 0.4 \text{ for } i \in \{1, 2\}.$ |  |  |
| hadronic $	au$                               | veto events with               | a hadronic $\tau$ and $m_{T2}^{\tau} <$                                      | 80 GeV.                                |  |  |
| Variable                                     | SR1                            | TCR1 / WCR1                                                                  | STCR1                                  |  |  |
| $\geq$ 4 jets with $p_{\rm T} > [{\rm GeV}]$ | (80 50 40 40)                  | (80 50 40 40)                                                                | (80 50 40 40)                          |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                 | > 260                          | > 200                                                                        | > 200                                  |  |  |
| $H_{\mathrm{T,sig}}^{\mathrm{miss}}$         | > 14                           | > 5                                                                          | > 5                                    |  |  |
| $m_{\rm T}$ [GeV]                            | > 170                          | [30,90]                                                                      | [30,120]                               |  |  |
| $am_{T2}$ [GeV]                              | > 175                          | [100, 200] / > 100                                                           | > 200                                  |  |  |
| topness                                      | > 6.5                          | > 6.5                                                                        | > 6.5                                  |  |  |
| $m_{\rm top}^{\chi}$ [GeV]                   | < 270                          | < 270                                                                        | < 270                                  |  |  |
| $\Delta R(b,\ell)$                           | < 3.0                          | _                                                                            | _                                      |  |  |
| $\Delta R(b_1, b_2)$                         | _                              | _                                                                            | > 1.2                                  |  |  |
| number of <i>b</i> -tags                     | ≥ 1                            | $\geq 1 / = 0$                                                               | ≥ 2                                    |  |  |





#### • Signal / Control Regions 2

| Common event selection                                                  |                                |                                                                            |                                     |  |  |  |
|-------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Trigger                                                                 | $E_{\rm T}^{\rm miss}$ trigger |                                                                            |                                     |  |  |  |
| Lepton                                                                  | exactly one signa              | l lepton ( $e$ , $\mu$ ), no addit                                         | ional baseline leptons.             |  |  |  |
| Jets                                                                    | at least four signa            | I jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{min}}) $ | $ ss  > 0.4$ for $i \in \{1, 2\}$ . |  |  |  |
| hadronic $	au$                                                          | veto events with a             | a hadronic $\tau$ and $m_{T2}^{\tau}$ <                                    | : 80 GeV.                           |  |  |  |
|                                                                         | SR2 TCR2 / WCR2 STCR2          |                                                                            |                                     |  |  |  |
| $\geq$ 4 jets with $p_{\rm T} > [{\rm GeV}]$                            | (120 80 50 25)                 | (120 80 50 25)                                                             | (120 80 50 25)                      |  |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                            | > 350                          | > 250                                                                      | > 200                               |  |  |  |
| $H_{ m T,sig}^{ m miss}$                                                | > 20                           | > 15                                                                       | > 5                                 |  |  |  |
| $m_{\rm T}$ [GeV]                                                       | > 200                          | [30,90]                                                                    | [30,120]                            |  |  |  |
| $am_{T2}$ [GeV]                                                         | > 175                          | [100, 200] / > 100                                                         | > 200                               |  |  |  |
| $\Delta R(b,\ell)$                                                      | < 2.5                          | _                                                                          | _                                   |  |  |  |
| $\Delta R(b_1, b_2)$                                                    | _                              | _                                                                          | > 1.2                               |  |  |  |
| number of <i>b</i> -tags                                                | $\geq 1$                       | $\geq 1 / = 0$                                                             | ≥ 2                                 |  |  |  |
| leading large-R jet $p_T$ [GeV]                                         | > 200                          | > 200                                                                      | > 200                               |  |  |  |
| leading large-R jet mass [GeV]                                          | > 140                          | > 140                                                                      | > 0                                 |  |  |  |
| $\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, 2^{\rm nd} {\rm large-R jet})$ | > 1.0                          | > 1.0                                                                      | > 1.0                               |  |  |  |





#### • Signal / Control Regions 3

| Common event selection                 |                                |                                                                           |                                            |  |  |
|----------------------------------------|--------------------------------|---------------------------------------------------------------------------|--------------------------------------------|--|--|
| Trigger                                | $E_{\rm T}^{\rm miss}$ trigger |                                                                           |                                            |  |  |
| Lepton                                 | exactly one signa              | l lepton $(e, \mu)$ , no addi                                             | tional baseline leptons.                   |  |  |
| Jets                                   | at least four signa            | al jets, and $ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{m}}) $ | $ iss  > 0.4 \text{ for } i \in \{1, 2\}.$ |  |  |
| hadronic $	au$                         | veto events with               | a hadronic $	au$ and $m_{T2}^{	au}$ -                                     | < 80 GeV.                                  |  |  |
|                                        | SR3                            | TCR3 / WCR3                                                               | STCR3                                      |  |  |
| $\geq$ 4 jets with $p_{\rm T}$ > [GeV] | (120 80 50 25)                 | (120 80 50 25)                                                            | (120 80 50 25)                             |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]           | > 480                          | > 280                                                                     | > 200                                      |  |  |
| $H_{ m T,sig}^{ m miss}$               | > 14                           | > 8                                                                       | > 5                                        |  |  |
| $m_{\rm T}$ [GeV]                      | > 190                          | [30,90]                                                                   | [30,120]                                   |  |  |
| $am_{T2}$ [GeV]                        | > 175                          | [100, 200] / > 100                                                        | > 200                                      |  |  |
| topness [GeV]                          | > 9.5                          | > 0                                                                       | > 9.5                                      |  |  |
| $\Delta R(b, \ell)$                    | < 2.8                          | _                                                                         | -                                          |  |  |
| $\Delta R(b_1, b_2)$                   | -                              | _                                                                         | > 1.2                                      |  |  |
| number of <i>b</i> -tags               | $\geq 1$                       | $\geq 1 / = 0$                                                            | ≥ 2                                        |  |  |
| leading large-R jet $p_T$ [GeV]        | > 280                          | > 200                                                                     | > 200                                      |  |  |
| leading large-R jet mass [GeV]         | > 70                           | > 70                                                                      | > 70                                       |  |  |





#### • Control Region plots (STCR1)



DIS 2016





#### SR Yields

| Signal region                              | SR1                 | SR2                             | SR3                 |
|--------------------------------------------|---------------------|---------------------------------|---------------------|
| Observed                                   | 12                  | 1                               | 1                   |
| Total bkg                                  | $5.50\pm0.72$       | $1.25\pm0.26$                   | $1.03\pm0.18$       |
| $t\bar{t}$                                 | $2.21\pm0.60$       | $0.29\pm0.10$                   | $0.20\pm0.07$       |
| Single top                                 | $0.46\pm0.39$       | $0.09\pm0.08$                   | $0.10\pm0.09$       |
| W+jets                                     | $0.71\pm0.43$       | $0.15\substack{+0.19 \\ -0.15}$ | $0.20\pm0.09$       |
| $t\bar{t} + W/Z$                           | $1.90\pm0.42$       | $0.61\pm0.14$                   | $0.41\pm0.10$       |
| Diboson                                    | $0.23\pm0.15$       | $0.11\pm0.07$                   | $0.12\pm0.07$       |
| $tar{t}~{ m NF}$                           | $1.10\pm0.14$       | $1.06\pm0.14$                   | $0.80\pm0.13$       |
| Single top NF                              | $0.62\pm0.46$       | $0.65\pm0.49$                   | $0.71\pm0.42$       |
| W+jets NF                                  | $0.75\pm0.12$       | $0.78\pm0.15$                   | $0.93\pm0.12$       |
| $t\bar{t} + W/Z$ NF                        | $1.42\pm0.24$       | $1.45\pm0.24$                   | $1.46\pm0.24$       |
| $p_0$                                      | $0.01(2.3\sigma)$   | $0.50\;(0.0\sigma)$             | $0.50\;(0.0\sigma)$ |
| $N_{\rm non-SM}^{\rm limit}$ exp. (95% CL) | $6.4^{+3.2}_{-2.0}$ | $3.6^{+2.3}_{-1.3}$             | $3.5^{+2.2}_{-1.2}$ |
| $N_{\rm non-SM}^{\rm limit}$ obs. (95% CL) | 13.3                | 3.4                             | 3.4                 |





• Signal Region yields







# Back-up 1 lepton + $E_{T}^{miss}$ + jets





- Sub-dominant backgrounds : *Z*+jets, VV, single top
  - ► MC only





### **Back-up 1 lepton + E\_{T}^{miss} + jets**







### **Back-up 1 lepton + E\_{T}^{miss} + jets**





### Back-up 1 leptons results









#### 12/04/2016

CENTRE DE PHYSIQUE DES PARTICULES DE MARSEILLE

DIS 2016

### Back-up 1 lepton SR definitions



|                                                    | 2-jet soft-lepton SR | 5-jet soft-lepton SR    |
|----------------------------------------------------|----------------------|-------------------------|
| $N_{\rm lep}$                                      | = 1                  | = 1                     |
| $p_{\mathrm{T}}^{\ell \ e(\mu)} \ (\mathrm{GeV})$  | 7(6) - $35$          | 7(6) - $35$             |
| $p_{\mathrm{T}}^{\ell_2 e(\mu)} \; (\mathrm{GeV})$ | < 7(6)               | < 7(6)                  |
| N <sub>jet</sub>                                   | $\geq 2$             | $\geq 5$                |
| $p_{\rm T}^{\rm jet} \ ({\rm GeV})$                | > 180, 30            | > 200, 200, 200, 30, 30 |
| $E_{\rm T}^{\rm miss}$ (GeV)                       | > 530                | > 375                   |
| $m_{\rm T}~({ m GeV})$                             | > 100                | -                       |
| $E_{ m T}^{ m miss}/m_{ m eff}^{ m incl}$          | > 0.38               |                         |
| $H_{\rm T}~({ m GeV})$                             | -                    | > 1100                  |
| Jet aplanarity                                     | -                    | > 0.02                  |

|                                           | 4-jet high-x SR | 4-jet low-x SR             | 5-jet SR        | 6-jet SR        |
|-------------------------------------------|-----------------|----------------------------|-----------------|-----------------|
| $N_{\rm lep}$                             | = 1             | = 1                        | = 1             | = 1             |
| $p_{\mathrm{T}}^{\ell}~(\mathrm{GeV})$    | > 35            | > 35                       | > 35            | > 35            |
| $p_{\mathrm{T}}^{\ell_2}~(\mathrm{GeV})$  | < 10            | < 10                       | < 10            | < 10            |
| $N_{\rm jet}$                             | $\geq 4$        | $\geq 4$                   | $\geq 5$        | $\geq 6$        |
| $p_{\rm T}^{\rm jet} ({\rm GeV})$         | > 325, 30, , 30 | $> 325, 150, \ldots , 150$ | > 225, 50, , 50 | > 125, 30, , 30 |
| $E_{\rm T}^{\rm miss}$ (GeV)              | > 200           | > 200                      | > 250           | > 250           |
| $m_{\rm T}~({\rm GeV})$                   | > 425           | > 125                      | > 275           | > 225           |
| $E_{ m T}^{ m miss}/m_{ m eff}^{ m incl}$ | > 0.3           |                            | > 0.1           | > 0.2           |
| $m_{ m eff}^{ m incl}~({ m GeV})$         | > 1800          | > 2000                     | > 1800          | > 1000          |
| Jet aplanarity                            | _               | > 0.04                     | > 0.04          | > 0.04          |

CENTRE DE PHYSIQUE DES Particiii es de marsfille



### Back-up 1 lepton SR yields



|                          |                        | Hard                          | Sot                           | ft-lepton       |                   |                   |
|--------------------------|------------------------|-------------------------------|-------------------------------|-----------------|-------------------|-------------------|
|                          | 4-jet low $x$          | 4-jet high $x$                | 5-jet                         | 6-jet           | 2-jet             | 5-jet             |
| Observed events          | 1                      | 0                             | 0                             | 10              | 2                 | 9                 |
| Fitted background events | $1.3 \pm 0.5$          | $0.9\pm0.5$                   | $1.3\pm0.6$                   | $4.4 \pm 1.0$   | $3.6\pm0.7$       | $7.7\pm1.9$       |
| $t\bar{t}$               | $0.40 \pm 0.31$        | $0.08\pm0.07$                 | $0.39\pm0.24$                 | $2.5 \pm 0.9$   | $0.64 \pm 0.33$   | $3.6 \pm 1.2$     |
| W+jets                   | $0.19\pm0.12$          | $0.7\pm0.5$                   | $0.16\pm0.12$                 | $0.22\pm0.15$   | $1.9\pm0.5$       | $2.5 \pm 1.3$     |
| Z+jets                   | $0.046 \pm 0.024$      | $0.029 \pm 0.028$             | $0.08\pm0.04$                 | $0.08\pm0.08$   | $0.49\pm0.13$     | $0.09\pm0.05$     |
| Single-Top               | $0.5\pm0.5$            | $0.04\substack{+0.10\\-0.04}$ | $0.22\substack{+0.23\\-0.22}$ | $0.5\pm0.4$     | $0.16\pm0.14$     | $0.43\pm0.34$     |
| Diboson                  | $0.06^{+0.20}_{-0.06}$ | $0.002^{+0.014}_{-0.002}$     | $0.38\pm0.24$                 | $0.9\pm0.5$     | $0.39\pm0.17$     | $1.0 \pm 0.7$     |
| $t\bar{t} + V$           | $0.050 \pm 0.022$      | $0.025 \pm 0.013$             | $0.060\pm0.030$               | $0.24 \pm 0.08$ | $0.088 \pm 0.029$ | $0.067 \pm 0.025$ |
| Background yield         | 1.7                    | 1.1                           | 1.6                           | кn              | 4.0               | 0.4               |
| from simulation          | 1.7                    | 1.1                           | 1.0                           | 5.2             | 4.0               | 9.4               |
| tī                       | 0.80                   | 0.26                          | 0.63                          | 3.2             | 0.93              | 4.1               |
| W+jets                   | 0.20                   | 0.7                           | 0.22                          | 0.32            | 1.9               | 3.8               |
| Z+jets                   | 0.046                  | 0.029                         | 0.08                          | 0.08            | 0.49              | 0.09              |
| Single-t                 | 0.5                    | 0.04                          | 0.22                          | 0.5             | 0.16              | 0.43              |
| Diboson                  | 0.06                   | 0.002                         | 0.38                          | 0.9             | 0.39              | 1.0               |
| $t\bar{t}$ +V            | 0.050                  | 0.025                         | 0.060                         | 0.24            | 0.088             | 0.067             |



## Back-up 1 lepton Exclusions







# $\begin{array}{l} Back-up\\ Z \rightarrow \textit{II} + \textit{E}_{T}^{\textit{miss}} + jets \end{array}$



#### Excess in Run-1 : SUSY-2014-10

- 3.0(1.7)  $\sigma$  in the ee(µµ) channel
- Not observed by CMS
- **Run 2 strategy :** Check the excess reproducing the same SR
  - $e^+e^- / \mu^+\mu^-$  pair with :
    - $P_{T} > 50 / 25 \text{ GeV}$
    - *m*<sub>∥</sub>[81- 101] GeV
  - ► ≥ 2 jets with  $\Delta \Phi_{\min}(E_{T^{\text{miss}}}, \text{ jets}) > 0.4$
  - $E_{T}^{miss}$  > 225 GeV and  $H_{T}$  > 600 Ge







# $\begin{array}{l} Back-up\\ Z \rightarrow \textit{II} + \textit{E}_{T}^{miss} + jets \end{array}$



- SR Yields :
  - $N_{\rm obs} (N_{\rm exp}) = 21 (10.3 + 2.3)$
  - N<sub>ee</sub> / N<sub>µµ</sub> = 10 / 11
  - Significance : 2.2σ
- Interpretation
  - $m(\tilde{\chi}^{\circ}_{2}) \sim 700 \text{ GeV}$  $\rightarrow$  gluino excluded up to 1.1 TeV
  - m(χ̃°<sub>2</sub>) ~ 200 GeV
     → gluino excluded up to 0.95 TeV
  - Worse limits than expected because of the slight excess





## **Back-up** $Z \rightarrow II + E_{T}^{miss} + jets$



#### Dominant background (~60%) : flavour symmetric <sup>></sup>/<sub>g</sub>

- Sources : tt (70%), WW (20%), tW (8%), Z → ττ
- Estimated using eµ Data Control Regions
  - Same kinematics as Signal Regions except larger m<sub>II</sub> window (more stats)

#### Z/γ\*+jets background (~10%) :

- Fake  $E_{T}^{\text{misss}}$  due detector resolution
- Estimated using  $E_T^{\text{misss}}$  distribution from  $\gamma$ +jets
  - Selection :  $N_{\gamma} \ge 1$ ,  $N_{\text{Jets}} \ge 2$
  - y reweighted to Z  $p_{\rm T}$
  - Normalised dedicated CR
    - $E_{T}^{miss} < 60 \text{ GeV}$
    - All other kinematic SR requirements
- Other Backgrounds (~30%) : WZ, ZZ, ttV etc ...
  - MC Only + dedicated WZ and ZZ validation in Data



#### 12/04/2016



### Back-up Z+MET SR/VR definitions



| Region                    | $E_{\mathbf{T}}^{\mathbf{miss}}$<br>[GeV] | $H_{\mathbf{T}}$<br>[GeV] | $n_{\mathbf{jets}}$ | $m_{\ell\ell} \ [{f GeV}]$      | SF/DF               | $\Delta \phi(\mathbf{jet}_{12}, oldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$ | $m_{\mathrm{T}}(\ell_3, E_{\mathrm{T}}^{\mathrm{miss}})$<br>[GeV] | $n_{ m b-jets}$ |
|---------------------------|-------------------------------------------|---------------------------|---------------------|---------------------------------|---------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------|
| Signal regions            |                                           |                           |                     |                                 |                     |                                                                             |                                                                   |                 |
| - SRZ                     | > 225                                     | > 600                     | $\geq 2$            | $81 < m_{\ell\ell} < 101$       | $\mathbf{SF}$       | > 0.4                                                                       | -                                                                 | -               |
| Control regions           |                                           |                           |                     |                                 |                     |                                                                             |                                                                   |                 |
| Z normalisation           | < 60                                      | > 600                     | $\geq 2$            | $81 < m_{\ell\ell} < 101$       | $\mathbf{SF}$       | > 0.4                                                                       | -                                                                 | -               |
| CR-FS                     | > 225                                     | > 600                     | $\geq 2$            | $61 < m_{\ell\ell} < 121$       | $\mathrm{DF}$       | > 0.4                                                                       | -                                                                 | -               |
| $\operatorname{CRT}$      | > 225                                     | > 600                     | $\geq 2$            | $m_{\ell\ell} \notin [81, 101]$ | $\mathbf{SF}$       | > 0.4                                                                       | -                                                                 | -               |
| Validation region         | IS                                        |                           |                     |                                 |                     |                                                                             |                                                                   |                 |
| VRZ                       | < 225                                     | > 600                     | $\geq 2$            | $81 < m_{\ell\ell} < 101$       | $\mathbf{SF}$       | > 0.4                                                                       | -                                                                 | -               |
| VRT                       | 100 - 200                                 | > 600                     | $\geq 2$            | $m_{\ell\ell} \notin [81, 101]$ | $\operatorname{SF}$ | > 0.4                                                                       | -                                                                 | -               |
| $\overline{\mathrm{VRS}}$ | 100 - 200                                 | > 600                     | $\geq 2$            | $81 < m_{\ell\ell} < 101$       | $\operatorname{SF}$ | > 0.4                                                                       | -                                                                 | -               |
| VR-FS                     | 100 - 200                                 | > 600                     | $\geq 2$            | $61 < m_{\ell\ell} < 121$       | $\mathrm{DF}$       | > 0.4                                                                       | -                                                                 | -               |
| VR-WZ                     | 100 - 200                                 | -                         | -                   | -                               | $3\ell$             | -                                                                           | < 100                                                             | 0               |
| VR-ZZ                     | < 100                                     | -                         | -                   | -                               | $4\ell$             | -                                                                           | -                                                                 | 0               |
| VR-3L                     | 60 - 100                                  | > 200                     | $\geq 2$            | $81 < m_{\ell\ell} < 101$       | $3\ell$             | > 0.4                                                                       | -                                                                 | -               |



### Back-up Z+Met SR/VR Yields



#### SR / VR Yields

|                                                                                                                                                           | SRZ                                                                     | VRS                                                          | VR-WZ                                                                                 | VR-ZZ                                                                  | VR-3L                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|
| Observed events                                                                                                                                           | 21                                                                      | 56                                                           | 89                                                                                    | 20                                                                     | 7                                                                |
| Total expected background events                                                                                                                          | $10.3 \pm 2.3$                                                          | $52.6\pm9.1$                                                 | $87 \pm 10$                                                                           | $15.5\pm3.4$                                                           | $6.5 \pm 1.6$                                                    |
| Flavour symmetric $(t\bar{t}, Wt, WW \text{ and } Z \rightarrow \tau\tau)$ events<br>WZ/ZZ events<br>$Z/\gamma^* + \text{jets events}$<br>Rare top events | $5.1 \pm 2.0$<br>$2.9 \pm 0.8$<br>$1.9 \pm 0.8$<br>$0.4 \pm 0.1$        | $18.9 \pm 4.8 \\ 7.5 \pm 1.7 \\ 24.8 \pm 7.6 \\ 1.4 \pm 0.2$ | $\begin{array}{c} 1.3 \pm 0.4 \\ 82 \pm 10 \\ 2.7 \pm 2.8 \\ 0.9 \pm 0.4 \end{array}$ | $\begin{array}{c} 0 \\ 15.5 \pm 3.4 \\ 0 \\ 0.04 \pm 0.02 \end{array}$ | $0.3 \pm 0.2$<br>$4.9 \pm 1.6$<br>$0.2 \pm 0.2$<br>$1.0 \pm 0.1$ |
| p-value<br>Significance<br>Observed (Expected) $S^{95}$                                                                                                   | $\begin{array}{r} 0.013\\ 2.2\\ 20.0 \ (10.2^{+4.4}_{-3.0})\end{array}$ |                                                              |                                                                                       |                                                                        |                                                                  |

| <b>Systematics</b> |  |
|--------------------|--|
|--------------------|--|

| VR-3L                                                            | VR-ZZ                                                                  | VR-WZ                                                                                 | VRS                                                                                       |
|------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 7                                                                | 20                                                                     | 89                                                                                    | 56                                                                                        |
| $6.5 \pm 1.6$                                                    | $15.5\pm3.4$                                                           | $87 \pm 10$                                                                           | $52.6\pm9.1$                                                                              |
| $0.3 \pm 0.2$<br>$4.9 \pm 1.6$<br>$0.2 \pm 0.2$<br>$1.0 \pm 0.1$ | $\begin{array}{c} 0 \\ 15.5 \pm 3.4 \\ 0 \\ 0.04 \pm 0.02 \end{array}$ | $\begin{array}{c} 1.3 \pm 0.4 \\ 82 \pm 10 \\ 2.7 \pm 2.8 \\ 0.9 \pm 0.4 \end{array}$ | $\begin{array}{c} 18.9 \pm 4.8 \\ 7.5 \pm 1.7 \\ 24.8 \pm 7.6 \\ 1.4 \pm 0.2 \end{array}$ |



### Back-up Z+MET Kinematic plots



No data driven shape corrections





Control Region

# Back-up 2/ same sign - 3 leptons





CENTRE DE PHYSIQUE DES Particules de marseille

DIS 2016

# Back-up 2/ same sign - 3 leptons



TICIII ES DE MARSEILLE



### Back-up 2ssl3l VR Def/Yields



|         | $N_{ m lept}^{ m signal} \left( N_{ m lept}^{ m cand}  ight)$ | $N_{b-\rm jets}^{20}$ | $N_{ m jets}^{25}$                             | $E_{\rm T}^{\rm miss}$ [GeV]  | $m_{\rm eff} \ [{\rm GeV}]$ | Other                                                                          |
|---------|---------------------------------------------------------------|-----------------------|------------------------------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------|
| VR-WW   | =2 ( $=2$ )                                                   | =0                    | $\geq 2$                                       | 35 - 200                      | 300-900                     | $m(j_1 j_2) > 500 \text{ GeV}$                                                 |
|         | =1 SS pair                                                    |                       |                                                |                               |                             | $p_{\mathrm{T}}(j_2) > 40 \mathrm{GeV}$                                        |
|         |                                                               |                       |                                                |                               |                             | $p_{\rm T}(\ell_2) > 30 {\rm ~GeV}$                                            |
|         |                                                               |                       |                                                |                               |                             | veto $80 < m_{ee} < 100 { m GeV}$                                              |
| VR-WZ   | =3 (=3)                                                       | =0                    | 1-3                                            | 30-200                        | <900                        | $p_{\rm T}(\ell_3) > 30 {\rm ~GeV}$                                            |
| VR-ttV  | $\geq 2$ (-)                                                  | $\geq 2$              | $\geq 5 \; (e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm})$ | 20-200                        | 200-900                     | $p_{\rm T}(\ell_2) > 25 {\rm GeV}$                                             |
|         | $\geq\!\!1$ SS pair                                           |                       | $\geq 3 \ (\mu^{\pm}\mu^{\pm})$                |                               |                             | veto $\{E_{\rm T}^{\rm miss} > 125 \text{ and } m_{\rm eff} > 650 {\rm GeV}\}$ |
| VR-ttZ  | $\geq 3$ (-)                                                  | $\geq 1$              | $\geq 4 (=1 b\text{-jet})$                     | 20 - 150                      | 100-900                     | $p_{\rm T}(\ell_2) > 25 {\rm GeV}$                                             |
|         | $\geq 1$ SFOS pair                                            |                       | $\geq 3 (\geq 2 b \text{-jets})$               |                               |                             | $p_{\rm T}(\ell_3) > 20 {\rm GeV} ({\rm if} e)$                                |
|         |                                                               |                       |                                                |                               |                             | $80 < m_{ m SFOS} < 100 { m GeV}$                                              |
| All VRs | Veto e                                                        | vents belo            | nging to any SR, or                            | if $\ell_1$ or $\ell_2$ is an | n electron with             | $ \eta  > 1.37$ (except in VR-WZ)                                              |







DIS 2016



### Back-up 2ssl3l SR/VR yields



#### SR yields

|                                                                                                                | m SR0b3j                                                                                                                       | SR0b5j                                                                                                                                          | SR1b                                                                                                                                                   | SR3b                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Observed events                                                                                                | 3                                                                                                                              | 3                                                                                                                                               | 7                                                                                                                                                      | 1                                                                                                                                              |
| Total background events $p(s=0)$                                                                               | $\begin{array}{c} 1.5\pm0.4\\ 0.13\end{array}$                                                                                 | $\begin{array}{c} 0.88\pm0.29\\ 0.04\end{array}$                                                                                                | $\begin{array}{c} 4.5\pm1.0\\ 0.15\end{array}$                                                                                                         | $\begin{array}{c} 0.80 \pm 0.25 \\ 0.36 \end{array}$                                                                                           |
| Fake/non-prompt leptons<br>Charge-flip<br>$t\bar{t}W$<br>$t\bar{t}Z$<br>WZ<br>$W^{\pm}W^{\pm}jj$<br>ZZ<br>Rare | $\begin{array}{c} - & - & - \\ 0.02 \pm 0.01 \\ 0.10 \pm 0.04 \\ 1.2 \pm 0.4 \\ - \\ - \\ < 0.03 \\ 0.14 \pm 0.08 \end{array}$ | $\begin{array}{c} 0.05\pm0.18\\ 0.02\pm0.01\\ 0.08\pm0.04\\ 0.05\pm0.03\\ \hline 0.48\pm0.20\\ 0.12\pm0.07\\ <0.04\\ 0.07\pm0.05\\ \end{array}$ | $\begin{array}{c} 0.8 \pm 0.8 \\ 0.60 \pm 0.12 \\ 1.1 \pm 0.4 \\ 0.92 \pm 0.31 \\ 0.18 \pm 0.11 \\ 0.03 \pm 0.02 \\ < 0.03 \\ 0.8 \pm 0.4 \end{array}$ | $\begin{array}{c} 0.13 \pm 0.17 \\ 0.19 \pm 0.06 \\ 0.10 \pm 0.05 \\ 0.14 \pm 0.06 \\ < 0.02 \\ < 0.01 \\ < 0.03 \\ 0.24 \pm 0.14 \end{array}$ |
| $\overline{N_{\rm BSM}^{\rm obs} \left(N_{\rm BSM}^{\rm exp}\right)} \sigma_{\rm vis}^{\rm obs} [{\rm fb}]$    | $5.9 \ (4.1^{+1.6}_{-0.8}) \\ 1.8$                                                                                             | $\begin{array}{c} 6.4 \ (3.6^{+1.2}_{-1.1}) \\ 2.0 \end{array}$                                                                                 | $8.8 \ (6.0^{+2.6}_{-1.6}) \\ 2.8$                                                                                                                     | $3.8 (3.7^{+1.1}_{-0.5}) \\ 1.2$                                                                                                               |

#### **VR** yields

|                         | VR-WW         | VR-WZ         | VR-ttV          | VR-ttZ        |
|-------------------------|---------------|---------------|-----------------|---------------|
| Observed events         | 4             | 82            | 19              | 14            |
| Total background events | $3.4\pm0.8$   | $98 \pm 15$   | $12.1\pm2.7$    | $9.7 \pm 2.5$ |
| Fake/non-prompt leptons | $0.6\pm0.5$   | $8\pm 6$      | $2.1 \pm 1.4$   | $0.6 \pm 1.0$ |
| Charge-flip             | $0.26\pm0.05$ | _             | $1.14 \pm 0.15$ | _             |
| $t\bar{t}W$             | $0.05\pm0.03$ | $0.25\pm0.09$ | $2.4 \pm 0.8$   | $0.10\pm0.03$ |
| $t\bar{t}Z$             | $0.02\pm0.01$ | $0.72\pm0.26$ | $3.9 \pm 1.3$   | $6.3 \pm 2.1$ |
| WZ                      | $1.0 \pm 0.4$ | $78 \pm 13$   | $0.19 \pm 0.10$ | $1.2 \pm 0.4$ |
| $W^{\pm}W^{\pm}jj$      | $1.3 \pm 0.5$ | _             | $0.02\pm0.03$   | _             |
| ZZ                      | $0.02\pm0.01$ | $8.2\pm2.8$   | $0.12\pm0.15$   | $0.30\pm0.19$ |
| Rare                    | $0.10\pm0.05$ | $2.8\pm1.4$   | $2.3\pm1.2$     | $1.1\pm0.6$   |



### Back-up 2ssl3l Systematics



|                                                                                                                 | SR0b3j                       | m SR0b5j                                                                  | SR1b                                                                     | SR3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diboson theoretical uncertainties $t\bar{t}V$ theoretical uncertainties<br>Other theoretical uncertainties      | $23\%\ 3\%\ 5\%$             | 16%<br>4%<br>3%                                                           | 1%<br>13%<br>9%                                                          | <1%<br>9%<br>15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MC statistical uncertainties                                                                                    | 11%                          | 14%                                                                       | 3%                                                                       | 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Jet energy scale<br>Jet energy resolution<br><i>b</i> -tagging<br>PDF<br>Fake/non-prompt leptons<br>Charge flip | 12%<br>3%<br>4%<br>6%<br>18% | $ \begin{array}{c} 11\% \\ 9\% \\ 6\% \\ 6\% \\ 20\% \\ 1\% \end{array} $ | $ \begin{array}{r} 6\% \\ 2\% \\ 3\% \\ 6\% \\ 18\% \\ 3\% \end{array} $ | $5\% \\ 3\% \\ 10\% \\ 8\% \\ 21\% \\ 8\% \\ 8\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\% \\ 10\%$ |
| Total background uncertainties                                                                                  | 30%                          | 34%                                                                       | 22%                                                                      | 31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Total background events                                                                                         | 1.5                          | 0.88                                                                      | 4.5                                                                      | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |