

Searches for squark and gluino production in hadronic final states with the ATLAS experiment

Geert-Jan Besjes (Niels Bohr Institute, University of Copenhagen) On behalf of the ATLAS collaboration

XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects Hamburg, 12 April 2016

Overview

- Why supersymmetry?
- Supersymmetry production at the LHC
- The ATLAS detector
- Targeted SUSY models
- Analysis strategy
- Discriminating variables
- Background estimation
- Results
- Conclusion and outlook

Why do we (still) like supersymmetry?

- SUSY is a matter-force symmetry
- Introduces bosonic superpartners for SM fermions, fermionic partners for SM bosons
- Allows **unification** of fundamental interactions
- Provides solution to the hierarchy problem and fine-tuning of the Higgs mass
- Offers candidate for **dark matter** particles
- No SUSY detected yet: broken symmetry
- A priori >100 free parameters in the full model
- Mass hierarchy and mixing matrices dictate possible decays and determine the lifetimes
- Many possible scenarios in your detector!

Supersymmetry at the LHC

- In the Minimal Supersymmetric Standard Model (MSSM), baryon number and lepton not preserved: introduce quantum number R = (-1)^{3(B-L)+2s}
- SM and SUSY get opposite parities; assuming R-parity conserved: pair production; stable lightest SUSY particle (LSP). (For RPV SUSY, see Bradley Axen's talk)
- At the LHC, 3 main prod. mechanisms:
 - Strong production of squarks and gluinos:

dominant, search using missing energy and jets

- 3rd generation production (stop and sbottom quark): light 3rd gen. squarks preferred by naturalness arguments; analyses exploit states with b-jets
- Electroweak production: direct production of gauginos (charginos, neutralinos) see also Yusufu Shehu's talk

5

The ATLAS detector

- High-precision tracking system (silicon pixels/strips and a transition radiation tracker), with new insertable b-layer (IBL)
- **Two calorimeters** (EM: liquid Ar; hadronic: scintillating tiles)

- **Muon spectrometer**: muon identification (comb. with tracker)
- Two large magnet systems (toroidal and solenoidal)
- Good jet resolution especially important for SUSY searches

Analyses covered

- Inclusive searches:
 - o leptons + 2-6 jets: <u>ATLAS-CONF-2015-062</u>
 - o leptons + 7-10 jets: <u>arXiv:1602.06194</u> (SUSY-2015-07)
- Third generation searches:
 - o leptons + 2 b-jets: <u>ATLAS-CONF-2015-066</u>
 - o or 1 lepton + 3+ b-jets: <u>ATLAS-CONF-2015-067</u>
- See <u>Sébastien Kahn's talk</u> for leptonic final states!
- Some limits presented at the <u>CERN seminar</u> on 15 December 2015 and at the <u>winter conferences</u>
- One result superseded by paper
- Documentation for all these in backup slides

ATLAS-CONF-2015-062 arXiv:1602.06194

Variables used to discriminate signal and background

• The **2-6 jets search** is based around the *effective mass*:

$$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum_{i \in jets} |p_{\rm T}^{(i)}|$$

- Correlates ~80% with SUSY particle mass in case of massless neutralino
- Additional cuts on $\Delta \phi$ (jet, E_T^{miss}) and E_T^{miss}/m_{eff} to reduce the multijet background
- The **7-10 jets search** additionally uses bins in the number of b-jets and uses the MET significance $E_T^{miss}/\sqrt{H_T}$, where H_T is the sum of jet pT's

Targeted models - third generation squarks

ATLAS-CONF-2015-066 ATLAS-CONF-2015-067

• 2 b-jet analysis uses contransverse mass:

 $m_{\rm CT}^2 = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\mathbf{p}_{\rm T}(v_1) - \mathbf{p}_{\rm T}(v_2)]^2$

with v₁ and v₂ the two visible particles, which has an endpoint for ttbar at 135 GeV and for sbottom at $m_{\rm CT}^{\rm max} = (m_{\tilde{b}_1}^2 - m_{\tilde{\chi}_1^0}^2)/m_{\tilde{b}_1}$

- 3+ b-jet analyses uses the effective mass and mT^{min}(b-jets, ET^{miss}) which has an endpoint for semileptonic ttbar events
- In addition, it uses cuts on the number of high-mass large-radius jets for direct gluino decays via stop quarks (gluino \rightarrow ttbar + $\tilde{\chi}_1^0$)

General analysis strategy

- All analyses performed on trigger plateau and with good data quality
- MC samples used to optimise event selection
- Data kept blinded in the signal regions until analysis almost completed
- SUSY signals acceptance and efficiency simulated with MC
- **Background** estimation:
 - **Reducible**: due to fake or misidentified objects, typically fully data-driven approaches used
 - Irreducible: taken from MC, normalised to data using simultaneous fit in control region(s); checked in validation region(s)
 - Allows cancellation of uncertainties
 - Note: no shape fits used
 - Minor irreducible backgrounds: pure MC
- Unblind signal regions, and:
 - celebrate in case of excess
 - if not, interpret results using different models

W+jets and ttbar background estimation

- Events from W+jets and ttbar enter signal regions in case of missing leptons (out of acceptance or misidentification), or through hadronic tau decays
- Control regions with exactly 1 isolated electron or muon used
- W+jets and ttbar separated by requiring or vetoing a b-jet, respectively
- Kinematic cuts slightly relaxed w.r.t. signal region
- Final prediction obtained in simultaneous control region fit

$Z \rightarrow vv$ background estimation

- Not enough $Z \rightarrow \ell \ell$ data to use as control region
- γ +jets events used instead: similar kinematic properties to the signal region used, but with a high-pT photon instead of E_T^{miss}
- Instrumental effects assumed to be identical for both processes
- Z/γ correction factor derived from data and MC in loose control region
- Obtained normalisation validated against measured $Z \rightarrow \ell \ell$ events

QCD background estimation

- The 2-6 jet and 3+ b-jet analyses: the background is negligible (< 0.5%) due to hard selections on E_T^{miss} and $\Delta \varphi$ (jet, E_T^{miss})
- 7-10 jet analysis has soft cut on $E_T^{miss}/\sqrt{H_T}$: QCD remains a major background
- Remaining background estimated from a template at low jet multiplicity data of the $E_T^{miss}/\sqrt{H_T}$ distribution
- Assumed that distribution is invariant to higher jet multiplicities
- · (Validated in regions with lower jet multiplicities than SR)

ATLAS-CONF-2015-062 ATLAS-CONF-2015-067

Results: gluino decays via squark, sbottom and stop

- Results from 2-6 jet search: • 7 overlapping SRs with 2-6 jets using cuts on m_{eff} and E_T^{miss}/m_{eff}; best SR picked for each point
- Results from **3+ b-jet search**: uses 3 SRs
 - o lep, 4+ OR 8+ jets, with cuts on E_T^{miss} and m_{eff} , to target sbottom
 - 1 lep + 6+ jets to target stop

ATLAS Preliminary

√s = 13 TeV, 3.3 fb⁻¹

SR

400

300

SR-Gtt-0L-C

NEW: statistical combination of 0+1 lepton regions

500

Data 2015

Single top

tī + W/7/h

Z+jets

W+jets Diboson

600

700

 E_{τ}^{miss} [GeV]

800

1000

1200

1400

1600

1800

20

m_a [GeV]

15

Events/ 50 GeV

6⊢

3

2

200

Results: direct squark decays, gluino one- and twostep

arXiv:1602.06194

17

ATLAS-CONF-2015-066

Results: bottom-squark pair-production

- 2 b-jet search with two sets of SRs: one for large and one for small mass differences between sbottom and LSP
- Improvement due to IBL: 2x rejection of light jets at same b-tagging efficiency
- For large mass differences cut on contransverse mass; for small mass differences use recoil against ISR jet
- Backgrounds: W+jets, Z+jets and top events from control regions with 1 or 2 leptons

Conclusion and outlook

- First run-2 data has made 2015 a productive year for SUSY searches for squarks and gluinos
- Most searches focused on a simple strategy analogous to run-1 and primarily on gluino production, due to cross-section increase
- Many benefitted from additional discovery potential
- No significant excesses over Standard Model observed
- 2016 will be a very interesting year for SUSY searches as the LHC ventures into territory (far) beyond the currently obtained limits!

All ATLAS SUSY public results always available online

Backup material

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

Sta	atus: March 2016							<u>s</u> = 7, 8, 13 TeV
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} (compressed) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\ell\ell/\ell/\ell'\nu/\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\ell\ell/\ell/\nu/\nu\nu\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell_{1}\nu/\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell\ell_{1}\nu/\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu/\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu/\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu/\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell_{1}\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu\nu)\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell\nu$	0-3 $e, \mu/1-2 \tau$ 0 mono-jet 2 e, μ (off-Z) 0 1 e, μ 2 e, μ 0 1-2 τ + 0-1 ℓ 2 γ γ 2 e, μ (Z) 0	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 1 <i>b</i> 2 jets 2 jets 2 jets mono-jet	 Yes 	20.3 3.2 20.3 3.2 20.3 20 3.2 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \textbf{1.85 TeV} & \textbf{m}(\tilde{q}) = \textbf{m}(\tilde{g}) \\ & \textbf{m}(\tilde{\ell}^0) = 0 \text{ GeV}, \textbf{m}(1^{st} \text{ gen.} \tilde{q}) = \textbf{m}(2^{nd} \text{ gen.} \tilde{q}) \\ & \textbf{m}(\tilde{k}^0) = 0 \text{ GeV}, \textbf{m}(1^{st} \text{ gen.} \tilde{q}) = \textbf{m}(2^{nd} \text{ gen.} \tilde{q}) \\ & \textbf{m}(\tilde{k}^0) = 0 \text{ GeV} \\ \textbf{52 TeV} & \textbf{m}(\tilde{k}^0) = 0 \text{ GeV} \\ \textbf{1.6 TeV} & \textbf{m}(\tilde{k}^0) = 0 \text{ GeV} \\ \textbf{1.6 TeV} & \textbf{m}(\tilde{k}^0) = 0 \text{ GeV} \\ \textbf{TeV} & \textbf{m}(\tilde{k}^0) = 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 20 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{1.63 TeV} & \textbf{ta}(\tilde{\mu}) > 100 \text{ GeV} \\ \textbf{ta}(\tilde{\mu}) < 850 \text{ GeV}, cr(\textbf{NLSP}) < 0.1 \text{ mm}, \mu < 0 \\ & \textbf{m}(\tilde{k}_1^0) < 850 \text{ GeV}, cr(\textbf{NLSP}) < 0.1 \text{ mm}, \mu > 0 \\ & \textbf{m}(\tilde{k}_1) > 1.8 \times 10^{-4} \text{ eV}, \textbf{m}(\tilde{g}) = \textbf{n}(\tilde{q}) = 1.5 \text{ TeV} \end{array}$	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-076 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493
3 rd gen. <u>§</u> med.	$\begin{array}{c} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	ğ ğ ğ 1.37 Tr	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2015-067 To appear 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow \tilde{\chi}_{1}^{\chi} \\ \tilde{t}_{1}\tilde{c}_{1}, \tilde{t}_{1} \rightarrow \tilde{t}_{1}^{\chi} \\ \tilde{t}_{1}\tilde{c}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{c}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow C\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{array} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \ (C) \\ 0 \\ 1 \\ 0 \\ e, \mu \ (Z) \\ 1 \ e, \mu \end{matrix}$	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets/1-2 <i>l</i> nono-jet/ <i>c</i> -ta 1 <i>b</i> 1 <i>b</i> 6 jets + 2 <i>b</i>	Yes Yes b Yes g Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{tabular}{ c c c c c c c } \hline b_1 & $840 \mbox{ GeV}$ \\ \hline b_1 & $325-540 \mbox{ GeV}$ \\ \hline $t_1117-170 \mbox{ GeV}$ & $200-500 \mbox{ GeV}$ \\ \hline t_1 & $90-198 \mbox{ GeV}$ & $205-715 \mbox{ GeV}$ \\ \hline t_1 & $90-245 \mbox{ GeV}$ \\ \hline t_1 & $90-245 \mbox{ GeV}$ \\ \hline t_1 & $150-600 \mbox{ GeV}$ \\ \hline t_2 & $290-610 \mbox{ GeV}$ \\ \hline t_2 & $320-620 \mbox{ GeV}$ \\ \hline \end{tabular}$	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) < 100 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 50 \ \text{GeV}, m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{1}^{0}) + 100 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 1 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 150 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) > 150 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \ \text{GeV} \\ \end{array}$	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-2016-007 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \bar{\nu} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell \tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \tau \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod.} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		$\begin{split} & m(\tilde{x}_{1}^{0}) {=} 0 \text{ GeV } \\ & m(\tilde{x}_{1}^{0}) {=} 0 \text{ GeV }, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{x}_{1}^{+}) {+} m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{1}^{0}) {=} 0 \text{ GeV }, m(\tilde{\tau}, \tilde{\nu}) {=} 0.5(m(\tilde{x}_{1}^{+}) {+} m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{1}^{+}) {=} m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{x}_{1}^{+}) {+} m(\tilde{x}_{1}^{0})) \\ & m(\tilde{x}_{1}^{+}) {=} m(\tilde{x}_{2}^{0}), m(\tilde{x}_{1}^{0}) {=} 0, sleptons decoupled \\ & m(\tilde{x}_{2}^{0}) {=} m(\tilde{x}_{2}^{0}), m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{x}_{2}^{0}) {+} m(\tilde{x}_{1}^{0})) \\ & c\tau {<} 1 \text{ mm} \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	$\begin{array}{c} \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod.}, \mbox{ long-lived } \tilde{\chi}_1^+ \\ \mbox{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \mbox{ prod.}, \mbox{ long-lived } \tilde{\chi}_1^+ \\ \mbox{Stable}, \mbox{stopped } \tilde{g} \mbox{ R-hadron} \\ \mbox{Metastable } \tilde{g} \mbox{ R-hadron} \\ \mbox{GMSB}, \mbox{stable } \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(c, \\ \mbox{GMSB}, \tilde{\chi}_1^0 {\rightarrow} \gamma \tilde{G}, \mbox{ long-lived } \tilde{\chi}_1^0 \\ \tilde{g} \tilde{g}, \tilde{\chi}_1^0 {\rightarrow} eev/e\muv/\mu\muv \\ \mbox{GGM } \tilde{g} \tilde{g}, \tilde{\chi}_1^0 {\rightarrow} Z \tilde{G} \end{array}$		1 jet - 1-5 jets - - - μ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) - 160 \; \text{MeV}, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; \text{ns} \\ m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0) - 160 \; \text{MeV}, \; \tau(\tilde{\chi}_1^{\pm}) < 15 \; \text{ns} \\ m(\tilde{\chi}_1^0) = 100 \; \text{GeV}, \; 10 \; \mu \text{s} < \tau(\tilde{g}) < 1000 \; \text{s} \\ m(\tilde{\chi}_1^0) = 100 \; \text{GeV}, \; \tau > 10 \; \text{ns} \\ 10 < \tan\beta < 50 \\ 1 < \tau(\tilde{\chi}_1^0) < 3 \; \text{ns}, \; \text{SPS8 model} \\ 7 \; < c\tau(\tilde{\chi}_1^0) < 740 \; \text{mm}, \; m(\tilde{g}) = 1.3 \; \text{TeV} \\ 6 \; < c\tau(\tilde{\chi}_1^0) < 480 \; \text{mm}, \; m(\tilde{g}) = 1.1 \; \text{TeV} \\ \end{array}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \widetilde{X}_{1}^{+}\widetilde{X}_{1}^{-}, \widetilde{X}_{1}^{+} \rightarrow W\widetilde{X}_{1}^{0}, \widetilde{X}_{1}^{0} \rightarrow ee\widetilde{v}_{\mu}, e\mu\widetilde{v}_{e} \\ \widetilde{X}_{1}^{+}\widetilde{X}_{1}^{-}, \widetilde{X}_{1}^{+} \rightarrow W\widetilde{X}_{1}^{0}, \widetilde{X}_{1}^{0} \rightarrow \tau\tau\widetilde{v}_{e}, e\tau\widetilde{v}_{\tau} \\ \widetilde{gs}, \widetilde{g} \rightarrow qqq \\ \widetilde{gs}, \widetilde{g} \rightarrow qqq \\ \widetilde{gs}, \widetilde{g} \rightarrow \widetilde{q}q\widetilde{X}_{1}^{0}, \widetilde{X}_{1}^{0} \rightarrow qqq \\ \widetilde{gs}, \widetilde{g} \rightarrow \widetilde{q}z\widetilde{X}_{1}^{0}, \widetilde{x}_{1}^{0} \rightarrow bs \\ \widetilde{t}_{1}\widetilde{t}_{1}, \widetilde{t}_{1} \rightarrow bs \\ \widetilde{t}_{1}\widetilde{t}_{1}, \widetilde{t}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \\ 0 \\ 2 \ e, \mu \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.7 TeV 5 TeV 1.7 TeV 	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
<mark>Other</mark>	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV	$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Onl sta	y a selection of the availab tes or phenomena is show	ole mass limi n.	ts on new		1	0 ⁻¹ 1	Mass scale [TeV]	

Background estimation using control regions

arXiv:1410.1280 / Eur. Phys. J. C 75 (2015) 153

o leptons, 2-6 jets, E_T^{miss} ATLAS-CONF-2015-062

o-lepton: signal and control region definitions

	Dequinement			Sig	gnal Reg	ion		
	nequirement	2jl	2jm	2 j t	4jt	5j	6jm	6jt
	$E_{\rm T}^{\rm miss} \ [{\rm GeV}] >$				200			
	$p_{\rm T}(j_1) \; [{ m GeV}] >$	200	300			200		
	$p_{\rm T}(j_2) \; [{\rm GeV}] >$	200	50	200		1(00	
	$p_{\rm T}(j_3) \; [{\rm GeV}] >$					1(00	
	$p_{\rm T}(j_4) \; [{\rm GeV}] >$		_			100		
	$p_{\rm T}(j_5) \; [{\rm GeV}] >$		-	_	100			
	$p_{\rm T}(j_6) \; [{\rm GeV}] >$			_	100			00
	$\Delta \phi(\mathrm{jet}_{1,2,(3)}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.8	0.4	0.8		0	.4	
	$\Delta \phi(\mathrm{jet}_{i>3}, \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$				0.2			
	$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \ [{\rm GeV}^{1/2}] >$	1	5	20	_			
	Aplanarity >		_			0.04		
	$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$		_		0.2	0.2 0.25 0.2		
	$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	1200	1600	2000	2200	1600	1600	2000
2	SR background C	CR proces	3S			CR selec	tion	
$R\gamma$	$Z(\rightarrow \nu \bar{\nu}) + jets$	$\gamma + \mathrm{jets}$			Is	solated p	hoton	
RQ	Multi-jet	Multi-jet	\mathbf{SR}	t with re-	versed re	quiremen	nts on (i)	(jet, E

CRW

CRT

o-lepton: control region results

Control regions shown for SR4jt

o-lepton: signal region results - 1/2

o-lepton: signal region results - 2/2

o-lepton: results table

Signal Region	2jl	2jm	2jt	4jt	5j	6jm	6jt		
		MO	C expected eve	ents					
Diboson	33	33	4.0	0.7	2.4	1.1	0.5		
$ m Z/\gamma^*+ m jets$	151	94	12	1.8	4.9	2.5	1.3		
W+jets	72	42	4.5	0.9	3.0	1.6	0.9		
$t\bar{t}(+\mathrm{EW}) + \mathrm{single top}$	18	17	1.2	0.9	2.7	1.6	1.1		
Multi-jet	0.6	0.8	0.03	—	—	—	—		
Total MC	275	188	22	4.3	13	6.7	3.8		
Fitted background events									
Diboson	33 ± 17	33 ± 17	4.0 ± 2.0	0.67 ± 0.35	2.4 ± 1.3	1.1 ± 0.6	0.5 ± 0.4		
$ m Z/\gamma^*{+jets}$	127 ± 12	85 ± 8	12 ± 4	1.5 ± 0.6	4.5 ± 1.3	2.0 ± 0.7	1.1 ± 0.6		
W+jets	61 ± 4	32 ± 5	2.9 ± 0.8	0.7 ± 0.4	3.3 ± 1.0	1.7 ± 0.7	1.0 ± 0.6		
$t\bar{t}(+\mathrm{EW}) + \mathrm{single \ top}$	14.6 ± 2.9	10.5 ± 2.6	0.7 ± 0.5	0.6 ± 0.4	1.4 ± 0.5	0.8 ± 0.4	0.46 ± 0.33		
Multi-jet	0.51 ± 0.06	0.6 ± 0.5	—	_	—	—	—		
Total bkg	237 ± 22	163 ± 20	20 ± 5	3.5 ± 0.8	11.7 ± 2.2	5.5 ± 1.2	3.1 ± 0.9		
Observed	264	186	25	6	7	4	3		
$\langle \epsilon \sigma \rangle_{\rm obs}^{95}$ [fb]	24	21	5.9	2.5	2.0	1.6	1.6		
$S_{ m obs}^{95}$	76	67	19	8.2	6.3	5.3	5.0		
S_{2}^{95}	52^{+22}	46^{+19}_{-12}	$14.1^{+5.1}$	$5.7^{+2.2}$	$8.5^{+3.3}_{-2.1}$	$6.5^{+2.5}_{-1.6}$	$5.0^{+2.3}$		
$p_0^{\text{exp}}(\mathbf{Z})$	$0.11 \ (1.20)$	$0.12 \ (1.15)$	$0.18 \ (0.93)^{-3.1}$	0.14 (1.08)	0.5 (0.0)	0.5(0.0)	0.5 (0.0)		

o-lepton: results overview

o-lepton: systematic uncertainties

Channel	2 jl	2jm	2jt	4jt	5j	6jm	6jt
Total bkg	237	163	20	3.5	11.7	5.5	3.1
Total bkg unc.	$\pm 22 \ [9\%]$	$\pm 20 [12\%]$	$\pm 5 [25\%]$	$\pm 0.8 [23\%]$	$\pm 2.2 [19\%]$	$\pm 1.2 \ [22\%]$	$\pm 0.9 [29\%]$
MC statistics	_	$\pm 1.8 [1\%]$	±0.5 [3%]	±0.26 [7%]	±0.5 [4%]	± 0.35 [6%]	± 0.27 [9%]
$\Delta \mu_{Z+{ m jets}}$	$\pm 6 [3\%]$	$\pm 5 \; [3\%]$	$\pm 2.0 [10\%]$	$\pm 0.5 [14\%]$	$\pm 0.8 [7\%]$	$\pm 0.6 [11\%]$	$\pm 0.4 [13\%]$
$\Delta \mu_{W+ m jets}$	$\pm 4 \ [2\%]$	$\pm 4 [2\%]$	$\pm 0.7 \; [3\%]$	$\pm 0.32 [9\%]$	$\pm 0.7 \; [6\%]$	$\pm 0.5 [9\%]$	$\pm 0.4 [13\%]$
$\Delta \mu_{\mathrm{Top}}$	$\pm 1.2 [1\%]$	$\pm 1.6 [1\%]$	$\pm 0.21 [1\%]$	$\pm 0.26~[7\%]$	$\pm 0.32 [3\%]$	$\pm 0.21 [4\%]$	± 0.24 [8%]
$\Delta \mu_{ m Multi-jet}$	$\pm 0.05 [0\%]$	± 0.09 [0%]	_	_	_	_	_
$CR\gamma$ corr. factor	± 8 [3%]	± 6 [4%]	$\pm 0.8 [4\%]$	$\pm 0.1 [3\%]$	$\pm 0.29 [2\%]$	$\pm 0.13 [2\%]$	$\pm 0.07 [2\%]$
Theory W	± 1.4 [1%]	$\pm 2.3 [1\%]$	± 0.4 [2%]	± 0.22 [6%]	$\pm 0.7 [6\%]$	± 0.4 [7%]	± 0.34 [11%]
Theory Z	$\pm 6 [3\%]$	$\pm 3.2 [2\%]$	$\pm 4 \ [20\%]$	± 0.32 [9%]	$\pm 0.9 \; [8\%]$	± 0.32 [6%]	$\pm 0.3 [10\%]$
Theory Top	$\pm 2.7 [1\%]$	$\pm 2.1 \ [1\%]$	$\pm 0.5 [3\%]$	± 0.24 [7%]	$\pm 0.2 [2\%]$	± 0.27 [5%]	$\pm 0.2 [6\%]$
Theory Diboson	± 16 [7%]	± 16 [10%]	± 2.0 [10%]	_	± 1.0 [9%]	_	-
$\mathrm{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$	$\pm 1.5 [1\%]$	± 2.1 [1%]	± 0.29 [1%]	± 0.14 [4%]	± 0.8 [7%]	±0.4 [7%]	$\pm 0.27 \; [9\%]$

o-lepton: limit plots

o leptons, 7+ jets, E_T^{miss} arXiv:1602.06194 (SUSY-2015-07)

Multijets: signal and control region definitions

	8j50	8j50-1b	8j50-	-2b 9j50	0 9j50-1t	9j50	-2b	10j5	0 10j50-	-1b	10j50-2b
n_{50}	≥ 8				≥ 9				≥ 10		
$n_{b- m jet}$		≥ 1	≥ 2	$2 \parallel -$	≥ 1	\geq	2		≥ 1		≥ 2
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$		$> 4 \mathrm{GeV}^{1/2}$									
			7j80	7j80-1b	7j80-2b	8j80	8j80	0-1b	8j80-2b		
	n ₈₀		·	≥ 7				≥ 8			
	n_{b-2}	jet		≥ 1	≥ 2			1	≥ 2		
	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$				> 4 G	$eV^{1/2}$					

SR name $nj50 \text{ or } nj50-1b \text{ or } nj50-2b$ $nj80 \text{ or } nj80-1b \text{ or } nj80-1b$				80-1b or <i>n</i> j80-2b			
CR name	CR(n-1)j50-0b	CR(n-1)j50-1b	CR(n-1)j80-0b	CR(n-1)j80-1b			
$p_{\mathrm{T}}^{\ell} \ (\ell \in \{e \mu\})$	> 20 GeV						
m_{T}	< 120 GeV						
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$		> 3 G	$\mathrm{eV}^{1/2}$				
$n_{50}^{ m CR}$	$\geq n_5$	$_{0} - 1$	—				
n_{80}^{CR}	_	_	$\geq n_{80} - 1$				
$n_{b-\text{jet}}$	0	≥ 1	0	≥ 1			

Multijets: control region results (7-jet example)

33

Multijets: closure test for multijets background

Multijets: signal region results (50 GeV jet regions)

35

Multijets: signal region results (80 GeV jet regions)

Multijets: signal region background composition

Multijets: results table

Signal nagion	Fit	ted backgroun	nd	Obs grants
Signal region	Multijet	Leptonic	Total	- Obs events
8j50	109.3 ± 6.9	80 ± 25	189 ± 26	157
8j50-1b	76.7 ± 2.7	62 ± 21	138 ± 21	97
8j50-2b	33.8 ± 2.1	33 ± 13	67 ± 13	39
9j50	16.8 ± 1.3	12.8 ± 5.4	29.6 ± 5.6	29
9j50-1b	13.5 ± 2.0	10.2 ± 4.9	23.8 ± 5.3	21
9j50-2b	6.4 ± 1.6	5.8 ± 3.3	12.1 ± 3.6	9
10j50	2.61 ± 0.61	1.99 ± 0.62	4.60 ± 0.87	6
10j50-1b	2.42 ± 0.62	1.44 ± 0.49	3.86 ± 0.79	3
10j50-2b	1.40 ± 0.87	0.83 ± 0.37	2.23 ± 0.94	1
7j80	40.0 ± 5.3	30 ± 13	70 ± 14	70
7j80-1b	29.1 ± 3.4	20.8 ± 10	50 ± 11	42
7j80-2b	11.5 ± 1.6	11.0 ± 5.0	22.5 ± 5.2	19
8j80	4.5 ± 1.9	4.9 ± 2.2	9.3 ± 2.9	8
8j80-1b	3.9 ± 1.5	3.8 ± 2.1	7.6 ± 2.6	4
8j80-2b	1.72 ± 0.93	2.3 ± 1.1	4.1 ± 1.5	2

Multijets: 8-jet candidate event in 8j80

Multijets: limit plots

Multijets: limit plots per signal region

o leptons + 2 b-jets ATLAS-CONF-2015-066

2 b-jets: signal region definitions

Variable	SRA	SRB
Event cleaning	Common	to all SR
Lepton veto	No e/μ with $p_{\rm T} > 10$ Ge	eV after overlap removal
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV	> 400 GeV
Leading jet $p_{\mathrm{T}}(j_1)$	> 130 GeV	> 300 GeV
2nd jet $p_{\rm T}(j_2)$	$> 50 { m GeV}$	> 50 GeV
Fourth jet $p_{\rm T}(j_4)$	vetoed if	> 50 GeV
$\Delta \phi^j_{ m min}$	> 0.4	> 0.4
$\Delta \phi(j_1,)$	-	> 2.5
b-tagging	j_1 and j_2	j_2 and $(j_3 \text{ or } j_4)$
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.25
$m_{ m CT}$	> 250, 350, 450 GeV	-
m_{bb}	$> 200 { m GeV}$	-

2 b-jets: control region definitions

Variable	CRzA	CRttA	CRstA	CRwA	CRzB	CRttB
Number of lep.	2 SFOS	1	1	1	2 SFOS	1
Lead. lep. $p_{\rm T}$ [GeV]	> 26	> 26	> 26	> 26	> 26	> 26
2nd lep. $p_{\rm T}$ [GeV]	> 20	_	-	-	> 20	-
$m_{\ell\ell} \; [\text{GeV}]$	[76 - 106]	_	-	-	[76 - 106]	-
$m_{\rm T} [{\rm GeV}]$	-	-	-	> 30	-	-
Lead. jet $p_{\rm T}(j_1)$ [GeV]	-	> 130	-	> 130	50	130
4th jet $p_{\rm T}(j_4)$			vetoed if	1 > 50 GeV		
b-tagged jets	j_1 and j_2	j_1 and j_2	j_1 and j_2	j_1	j_2 and	j_2 and
					$(j_3 \text{ or } j_4)$	$(j_3 \text{ or } j_4)$
$E_{\rm T}^{\rm miss} [{ m GeV}]$	< 100	> 100	> 100	> 100	< 70	> 200
$E_{\rm T}^{\rm miss, cor} [{\rm GeV}]$	> 100	-	-	-	> 100	-
m_{bb} [GeV]	-	< 200	> 200	$(m_{bj}) > 200$	-	-
$m_{\rm CT} [{\rm GeV}]$	> 150	> 150	> 150	> 150	-	-
$m_{b\ell}^{\min}$ [GeV]	-	-	> 170	-	-	-
$\Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}})$	-	_	-	-	> 2.0	> 2.5

2 b-jets: control region results

2 b-jets: signal region results

2 b-jets: results table (control regions)

CR	CRzA	CRwA	CRttA	CRstA	CRzB	CRttB
Observed events	84	540	255	54	55	181
Fitted bkg events	84 ± 9	540 ± 23	255 ± 16	54 ± 7	55 ± 7	181 ± 13
Fitted <i>tī</i> events	4.7 ± 1.4	123 ± 29	169 ± 25	8.3 ± 3.8	14 ± 4	150 ± 15
Fitted single top events	0.4 ± 0.4	49 ± 25	27 ± 13	22 ± 8	0.4 ± 0.2	16.8 ± 2.9
Fitted W+jets events	-	350 ± 47	52 ± 17	23 ± 6	-	12.6 ± 4.9
Fitted Z+jets events	75 ± 9	5.0 ± 1.6	2.3 ± 0.5	-	41 ± 8	0.3 ± 0.1
Fitted "Other" events	3.6 ± 1.3	11.7 ± 2.1	4.4 ± 0.9	0.8 ± 0.4	-	1.3 ± 0.6
MC exp. SM events	54	491	283	56	49	196
MC exp. $t\bar{t}$ events	5.7	148	204	10	15	166
MC exp. single top events	0.5	62	34	28	0.4	17
MC exp. W +jets events	-	266	40	17	-	12.6
MC exp. Z+jets events	45	3.0	1.4	-	33	0.2
MC exp. "Other" events	3.6	11.7	4.4	0.8	-	1.3

2 b-jets: results table (signal regions)

Signal region channels	SRA250	SRA350	SRA450	SRB
Observed events	22	6	1	5
Fitted bkg events	40 ± 8	9.5 ± 2.6	2.2 ± 0.6	13.1 ± 3.2
Fitted <i>tt</i> events	0.9 ± 0.4	0.37 ± 0.16	0.06 ± 0.03	5.9 ± 2.4
Fitted single top events	2.1 ± 1.3	0.54 ± 0.37	0.15 ± 0.10	1.2 ± 0.8
Fitted W+jets events	6.3 ± 2.4	1.3 ± 0.6	0.41 ± 0.23	1.2 ± 0.6
Fitted Z+jets events	30 ± 7	7.1 ± 2.4	1.5 ± 0.5	3.3 ± 1.4
(Alt. method Z+jets events)	(33 ± 7)	(7.2 ± 1.9)	(2.7 ± 0.9)	
Fitted "Other" events	0.7 ± 0.6	0.1 ± 0.1	0.02 ± 0.02	1.4 ± 0.4
MC exp. SM events	27	6.5	1.5	13
MC exp. $t\bar{t}$ events	1.1	0.45	0.07	6.6
MC exp. single top events	2.7	0.7	0.20	1.2
MC exp. W +jets events	4.7	1.0	0.31	1.2
MC exp. Z+jets events	18	4.2	0.9	2.7
MC exp. "Other" events	0.7	0.1	0.02	1.4

٨٨

15

2 b-jets: limit plots

o or 1 leptons + 3+ b-jets ATLAS-CONF-2015-067

o/1 lepton, 3+ b-jets: signal and control regions (Gbb)

Criteria common to all Gbb regions: ≥ 4 signal jets, ≥ 3 <i>b</i> -jets							
	Variable	Signal region	Control region	Validation region			
	Lepton	Candidate veto	= 1 signal	Candidate veto			
Criteria common	$\begin{bmatrix} -\overline{\Delta}\phi_{\min}^{4j} \end{bmatrix}$	> 0.4		> 0.4			
to all regions of the	$m_{T,min}^{b-jets}$			< 160			
same type	$m_{ m T}$	_	< 150	_			
D	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 90	> 90	> 90			
Region A (Large mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 250	> 250			
	m_{eff}^{4j}	> 1600	> 1200	< 1400			
D : D	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 90	> 90	> 90			
Region B (Moderate mass splitting)	$\begin{bmatrix} - & - & - & - \\ - & E_{\mathrm{T}}^{\mathrm{miss}} \end{bmatrix}$	> 450	> 300	> 300			
	m_{eff}^{4j}	> 1400	> 1000	< 1400			
	$p_{\mathrm{T}}^{\mathrm{jet}}$	> 30	> 30	> 30			
Region C (Small mass splitting)	$\begin{bmatrix} - & - & - & - \\ - & E_{\mathrm{T}}^{\mathrm{miss}} \end{bmatrix}$	> 500	> 400	> 400			
、 · · · · · · · · · · · · · · · · · · ·	m_{eff}^{4j}	> 1400	> 1200	< 1400			

o/1 lepton, 3+ b-jets: signal and control regions (Gtt o-lep)

Criteria common to all Gtt 0-lepton regions: $p_{\rm T}^{\rm jet} > 30 {\rm ~GeV}$					
	Variable	Signal region	Control region	VR1L	VR0L
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 1 signal	0 signal		
Criteria common	$\Delta \phi_{\min}^{4j}$	> 0.4			> 0.4
to all regions of the	N^{jet}	≥ 8	≥ 7	≥ 7	≥ 8
same type	$\begin{bmatrix} b^{-jets} \\ m^{b-jets}_{T,min} \end{bmatrix}$	> 80		> 80	< 80
	m_{T}	_	< 150	< 150	
	$E_{\rm T}^{\rm miss}$ > 400 > 250		> 250	> 250	> 200
Region A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	> 1350	> 1400		
(Large mass splitting)	$\begin{bmatrix} - & - & - & - \\ & N^{b-\text{jet}} \end{bmatrix}$	≥ 3	≥ 3	≥ 3	≥ 2
	$\begin{bmatrix} - & - & - & - & - \\ & N^{top} & & \\ \end{bmatrix}$	≥ 1	≥ 1	≥ 1	≥ 1
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 200	> 200	> 200
Region B	$m_{\rm eff}^{\rm incl}$	> 1250	> 1000	> 1000	> 1100
(Moderate mass splitting)	$\begin{bmatrix} \mathbf{N}^{b-\mathrm{jet}} \end{bmatrix}$	≥ 4	≥ 4	≥ 4	≥ 3
	$\mathbf{N}^{\mathrm{top}}$	≥ 1	≥ 1	≥ 1	≥ 1
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 350	> 200	> 200	> 200
Region C (Small mass splitting)	$\begin{bmatrix} - & - & - & - \\ m_{\rm eff}^{\rm incl} \end{bmatrix}$	> 1250	> 1000	> 1000	> 1250
	$\begin{bmatrix} - & - & - & - \\ & N^{b-\text{jet}} \end{bmatrix}$	≥ 4	≥ 4	≥ 4	≥ 3

0/1 lepton, 3+ b-jets: signal and control regions (Gtt 1-lep)

Criteria common to all Gtt 1-lepton regions: ≥ 1 signal lepton, $p_{\rm T}^{\rm jet} > 30$ GeV					
	Variable	Signal region	Control region	$VR-m_T$	$VR-m_{T,min}^{b-jets}$
Criteria common to all regions of the		> 150	< 150	> 150	< 150
	N^{jet}	≥ 6	≥ 6	≥ 5	≥ 6
same type	same type $N^{b-jet} \ge 3 \ge 3$	≥ 3	= 3	= 3	
Region A (Large mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200	> 200	> 200	> 200
	m_{eff}^{incl}	> 1100	> 1100	> 600	> 600
	$\begin{bmatrix} - & - & - & - \\ & b - & jets \\ & T, min \end{bmatrix}$	> 160		< 160	> 140
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	≥ 1	≥ 1		
Region B (Moderate to small mass splitting)	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 300	> 300	> 200	> 200
	m_{eff}^{incl}	> 900	> 900	> 600	> 600
	$\begin{bmatrix} b \\ m_{\rm T,min}^{b-\rm jets} \end{bmatrix}$	> 160		< 160	> 160

o/1 lepton, 3+ b-jets: preselection results (Gbb)

o/1 lepton, 3+ b-jets: preselection results (Gtt o-lep)

o/1 lepton, 3+ b-jets: preselection results (Gtt 1-lep)

56

o/1 lepton, 3+ b-jets: validation region results

o/1 lepton, 3+ b-jets: signal region results

o/1 lepton, 3+ b-jets: signal region results (Gbb)

	SR-Gbb-A	SR-Gbb-B	SR-Gbb-C
Observed events	0	1	5
Fitted background events	1.4 ± 0.7	1.5 ± 0.5	7.5 ± 1.4
$t\overline{t}$	0.7 ± 0.5	0.83 ± 0.32	3.9 ± 1.0
Z+jets	0.25 ± 0.26	0.25 ± 0.22	1.4 ± 0.6
W+jets	0.19 ± 0.10	0.15 ± 0.06	0.95 ± 0.34
Single-top	0.22 ± 0.10	0.16 ± 0.15	0.67 ± 0.33
$t\bar{t}W,t\bar{t}Z,t\bar{t}H,t\bar{t}t\bar{t}$	< 0.1	< 0.1	0.18 ± 0.10
Diboson	—	< 0.1	0.43 ± 0.25
MC-only prediction	1.7	1.6	7.1
$\mu_{tar{t}}$	0.7 ± 0.3	0.9 ± 0.4	1.1 ± 0.4

0/1 lepton, 3+ b-jets: signal region results (Gtt)

	SR-Gt	SR-Gtt-0l-A		t-0L-B	SR-Gtt-0L-C	
Observed events		1		-	1	
Fitted background events	$2.0 \pm$	- 0.7	2.8 ± 1.7		3.2 ± 1.7	
$\overline{t\overline{t}}$	$1.3 \pm$	1.3 ± 0.6		- 1.6	2.4 ± 1.7	
Z+jets	$0.24 \pm$	0.24 ± 0.17		= 0.13	0.16 ± 0.09	
W+jets	$0.21 \pm$	0.21 ± 0.14		- 0.16	0.20 ± 0.21	
Single-top	$0.14 \pm$	= 0.16	0.15 ± 0.13		0.18 ± 0.16	
$tar{t}W,tar{t}Z,tar{t}h,tar{t}tar{t}$	< ().1	0.10 ± 0.06		0.11 ± 0.06	
Diboson	< (< 0.1 <).1	0.18 ± 0.18	
MC-only prediction	1.	8	1.9		2.6	
$\mu_{tar{t}}$	$1.2 \pm$	1.2 ± 0.4		= 0.7	1.4 ± 0.6	
		SR-Gt	t-1L-A	SR-G	tt-1L-B	
Observed events		2			0	
Fitted background events		1.3 ± 0.4 1		1.1 :	± 0.6	
$t \overline{t}$	$t\bar{t}$		0.91 ± 0.33 0.8		± 0.5	
Z + jets	jets		_		_	
$W{+}\mathrm{jets}$		<	0.1	<	0.1	
\mathbf{Single} -top		0.19 :	± 0.15	0.15 :	± 0.13	
$t\bar{t}W,t\bar{t}Z,t\bar{t}h,t\bar{t}t\bar{t}$		$0.18 \pm$	± 0.10	0.18 :	± 0.10	
Diboson	Diboson		_		_	
MC-only prediction	MC-only prediction		1.3		2	
$\mu_{tar{t}}$	$\mu_{tar{t}}$		1.0 ± 0.3 $0.9 \pm$		± 0.3	

o/1 lepton, 3+ b-jets: limit plots

