

Top quark pair property measurements using the ATLAS detector at the LHC

DIS 2016 11-15 April, DESY

Mohammad J. Kareem on behalf of the ATLAS collaboration

Georg-August-Universität Göttingen

Bundesministerium für Bildung und Forschung

Mohammad J. Kareem

13 Apr. 2016

Introduction & Motivation

Why Study Top Quark Properties?

- Heaviest fundamental particle discovered so far $\rightarrow m_t = 173.34 \pm 0.76 \text{ GeV}$ [arXiv:1403.4427]
- Extremely short lifetime \rightarrow a unique opportunity to study a bare quark
- Strong coupling to Higgs → special role in the Standard Model
- A window to new physics?
- High production rate at the LHC → precision measurements and detailed studies of properties

Where charge asymmetry comes from?

- @LO: Top quark and Top anti-quark are symmetric
- @NLO and higher orders correction: Top pair production via $q\bar{q}$ annihilation mainly causes an asymmetry in Top quark and Top anti-quark rapidity by the interference of ISR with FSR and Born with box diagram

Charge Asymmetry

A_{FB} Forward-backward asymmetry

- *pp* collisions @Tevatron
- Direction of incoming quark almost always coincides with that of proton
- Allows to define a direct **A**_{FB} measurement
- SM: 8 9%
- $q\bar{q}
 ightarrow t\bar{t}$ ~ 80%

A_c Charge asymmetry

- pp collisions @LHC
- Valence quarks carry on average larger fraction of the proton momentum than the sea quarks
- **Top quarks** (anti-quarks) are more forward (central)
- SM: ~1%
- $q\bar{q}
 ightarrow t\bar{t}$ ~ 20% @ 8 TeV

Charge Asymmetry

Eur. Phys. J. C76 (2016) 87

Ac measurement in single lepton channel @8 TeV

- Data sample enriched in top-quark pairs selected:
 - >4 jets, 1 high p⊤ lepton and E⊤(Miss)
- Events are reconstructed via kinematic likelihood fit
- Alyl unfolded to parton level via Fully Bayesian unfolding algorithm
- Data statistics is the limiting factor
- Dominant source of uncertainty: $t\overline{t}$ modeling
- Most significant deviation w.r.t. SM observed in $m_{t\bar{t}} > 900 \text{ GeV}$ interval, reaching ~1 σ

Results

- Inclusive result: A_C =0.009±0.005, SM_{NLO}: A_C =0.0111±0.0004
- Differential measurement w.r.t. Top pair system mass, transverse momentum

and longitudinal boost β_z compatible with SM

13 Apr. 2016

Impact on Beyond Standard Model physics

- BSM models:
 - W' boson
 - heavy axigluon (Gμ)
 - scalar iso-doublet (φ)
 - colour-triple scalar (ω^4)
 - colour-sextet scalar (Ω^4)
- Limits set to the parameters (i.e. masses and couplings) describing various BSM models

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Charge Asymmetry in Boosted Top

Ac measurement in lep.+jets channel @8 TeV in boosted topology

- Hadronic Top quark decay reconstructed as a single large radius jet
- Offers more precise reconstruction of $m_{t\bar{t}}$ for highly boosted Top quarks
- Provides accurate A_c measurement for $t\bar{t}$ invariant mass in TeV range
- Large-radius jet: R=1.0 and p_T > 300GeV and well separated from small-radius jet and the lepton
- Alyl unfolded to parton level via Fully Bayesian unfolding algorithm
- Differential measurement w.r.t. top pair system mass
- Most significant deviation w.r.t. SM observed in $m_{t\bar{t}} = 0.9$ -1.3 TeV interval, reaching **1.6** σ
- Data statistics is the limiting factor
- Dominant source of uncertainty: $t\bar{t}$ modeling

Results

- In fiducial space $m_{t\bar{t}} > 0.75~{
 m TeV}$ and $-2 < \Delta |y| < 2$:
 - $A_c = (4.2 \pm 3.2)\%$, less than 1σ from SM prediction of $1.60 \pm 0.04\%$
- Differential measurement:

$m_{t\bar{t}}$ interval	> 0.75 TeV	0.75 – 0.9 TeV	0.9 – 1.3 TeV	> 1.3 TeV
Measurement	$(4.2 \pm 3.2)\%$	$(2.2 \pm 7.3)\%$	$(8.6 \pm 4.4)\%$	(-2.9 ± 15.0) %
SM prediction	$(1.60 \pm 0.04)\%$	$(1.42 \pm 0.04)\%$	$(1.75 \pm 0.05)\%$	$(2.55 \pm 0.18)\%$

13 Apr. 2016

Charge Asymmetry in Boosted Top

Achievements and Impact on BSM physics

- Provide a constraint on extensions of the SM
- Disfavouring the t-channel **W' boson model** in the highest $m_{t\bar{t}}$ bin
- Complementary to previous ATLAS measurement
- Extended the reach of previous ATLAS and CMS measurements to beyond 1 TeV

Flavour changing neutral current decay

- Forbidden at tree level in SM
- Heavily suppressed at higher orders via GIM suppression
- BSM can enhance FCNC up to ~ 10⁻⁴
- Has not been observed yet, but potentially can indicate new physics if observed
- "Data statistic" is the limiting factor. Run II with larger $t\bar{t}$ cross section and integrated luminosity will soon improve the current limits

Top quark in SM

[K. Agashe et al., arXiv:1311.2028]

s, d, b	u, c	Process	\mathbf{SM}	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
	×	$t \rightarrow Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
	W.	$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
	b, s, d \checkmark	$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
W	b s d	$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
· · · · · · · · · · · · · · · · · · ·	000000 0,0,0	$t \to \gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
קי קי	g_0000	$t\to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
Υ , <i>ν</i>	-9	$t \to h u$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
	0.114	$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$
BR~ 100%	GIM BR~ 10 ⁻¹³ - 10 ⁻¹⁴							

t ____

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

FCNC in Top Decay (t \rightarrow Hq)

JHEP 12 (2015) 061

Search for FCNC Top quark decays t \rightarrow Hq @8 TeV

- Top quarkSM decays via leptonic channel
- Top quark^{FCNC} decays via $H \to b\bar{b}$
- ≥4 jets, ≥2 b-tagged, 1 high p⊤ lepton
- Categorised in 9 channels:
 - jets(4,5, ≥6), b-tagged jets (2, 3, ≥4)

Binned likelihood fit on sig-bkg discriminant (**D**), in all channels

• Dominant systematic unc.: $t\overline{t}$ +jets modeling and b-tagging

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow hu$	2×10^{-17}	6×10^{-6}	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \to hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

[1]: Nucl.Phys.B821:215--227,2009

FCNC in Top Decay (t \rightarrow Hq)

Discrimination of signal from background

- Signal-to-background ratio is very low
- $D(x) = \frac{p^{Sig}(x)}{p^{Sig}(x) + p^{Bkg}(x)}$ Sig-bkg discriminant:
- $p^{Sig}(x)$ and $p^{Bkg}(x)$ are probability density functions for a given event under signal and background hypothesis
- x represents the four-momentum vectors of all final-state particles at the reco. level + b-tagging info

pre-fit

13 Apr. 2016

FCNC in Top Decay (t \rightarrow Hq)

Results

- Observed (expected) 95% CL limits set:
- BR(t→Hc) < 5.6 x 10⁻³ (4.2 x 10⁻³) ⇒ Iλ_{tcH}I < 0.14 (0.12)
- BR(t→Hu) < 6.1 x 10⁻³ (6.4 x 10⁻³) ⇒ Iλ_{tuH}I < 0.15 (0.15)
- Where λ_{tqH} is non-flavour-diagonal Yukawa coupling in $\mathcal{L}_{FCNC} = \lambda_{tcH} \overline{t} H c + \lambda_{tuH} \overline{t} H u + h.c.$
- Combination with other results:

• $t\overline{t} \to WbHq$, $H \to \gamma\gamma$: [JHEP06(2014)008] • $t\overline{t} \to WbHq$, $H \to W^+W^-$, $\tau^+\tau^-$: [Phys. Let. B 749 (2015) 519-541]

BR(t→Hc) < 4.6 x 10⁻³ (2.5 x 10⁻³) ⇒ $|\lambda_{tcH}| < 0.13$ (0.10)
BR(t→Hc) < 4.5 x 10⁻³ (2.9 x 10⁻³) ⇒ $|\lambda_{tuH}| < 0.13$ (0.10)

 No significant excess of events above the backgrounds expectations found

Conclusion

The Most restrictive direct bounds on tqH(q=u,c) interactions measured so far

13 Apr. 2016

FCNC in Top Decay (t \rightarrow qZ)

Search for FCNC Top quark decays t \rightarrow qZ @8 TeV

- Top quarkSM decays via leptonic channel
- **Top quark**^{FCNC} decays via $Z \rightarrow \ell \ell$
- 3 isolated high p_T leptons
- ≥2 jets, 1-2 b-tagged and E_T(Miss)
- Reconstruction via χ^2 method:

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^{2}}{\sigma_{t_{\text{FCNC}}}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^{2}}{\sigma_{t_{\text{SM}}}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}}$$

• Reconstruction quality cut ($\chi^2 < 6$)

Result

- Upper limit on BR (t \rightarrow qZ) at 95% CL is set:
 - Observed: 7 x 10⁻⁴
 - Expected: 8 x 10⁻⁴

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \to Zu$	7×10^{-17}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$

[2]: Nucl.Phys.B812:181--204,2009

13 Apr. 2016

FCNC in Top Decay

Conclusion

- Almost sensitivity to exclude $t \rightarrow Hc$ in 2HDM(FV)
- More statistics is needed

single top-quark production via FCNC @8TeV in ATLAS: BR(t→gu) < 4 x 10⁻⁵ and BR(t→gc) < 20 x 10⁻⁵ [Eur. Phys. J. C (2016) 76:55]

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}	_	_	$< 10^{-7}$	$< 10^{-6}$	_
$t \rightarrow Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
$t \rightarrow g u$	4×10^{-14}	_		$\leq 10^{-7}$	$\leq 10^{-6}$	_
$t \to gc$	$5 imes 10^{-12}$ ($\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
$t \to \gamma u$	4×10^{-16}		—	$\leq 10^{-8}$	$\leq 10^{-9}$	_
$t\to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
t ightarrow hu	2×10^{-17}	6×10^{-6}		$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Spin Correlation in Top Decay

Polarisation power

- Spin information can be accessed via the angular momentum of the Top quark decay products
- The amount of spin correlation is sensitive to the production mechanism
- Many BSM scenarios predict different spin correlation, e.g. models including axigluons, W' bosons, extra right handed top-quark coupling, etc.
- Polar angles of leptons in helicity basis:

đ

$$\frac{1}{N} \frac{d^2 N}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} \left(1 + B_1 \cos \theta_1 + B_2 \cos \theta_2 - C_{\text{helicity}} \cos \theta_1 \cdot \cos \theta_2 \right)$$
Top quark polarisation Top anti-quark polarisation Spin correlation
$$\mathbf{b}$$

$$\mathbf{b}$$

$$\mathbf{w}^*$$

b

Spin Correlation in Top Decay

Phys. Rev. D 93, 012002 (2016)

Polar angles correlation measurement @ 7 TeV

- Events are selected in dilepton topology with two jets
- Distribution of $\cos\theta_1 . \cos\theta_2$ is reconstructed via "topology reconstruction method"
- Unfolded to parton level via Fully Bayesian unfolding algorithm
- Dominant syst. unc. : Unfolding method, signal modeling and jet reco.

Results

- In terms of $A_{helicity} = (N_{like} N_{unlike}) / (N_{like} + N_{unlike}) [*]:$
 - $A_{helicity} = 0.315 \pm 0.061(stat.) \pm 0.049(syst.)$
 - NLO QCD prediction: A_{helicity} =0.31 [Phys.Rev.Lett. 87 (2001) 242002]

1 In good agreement with SM prediction

13 Apr. 2016

^{[*]:} N_{like} (N_{unlike}): # of events where top quark and top anti-quark are parallel (anti-parallel)

Summary

The Top Quark

- Has very special properties
- Can open a window to BSM physics
- Good probe for the Standard Model

Property Measurements @ Run I

- Charge asymmetry measurement: performed in resolved and boosted topology
- FCNC searches in Top quark decay: performed in $(t \rightarrow qZ)$ and $(t \rightarrow Hq)$
- Spin correlation: polar angles correlation measurement in dilepton channel
- **No significant deviations, validated the Standard Model with different measurements**
- More interesting measurements upcoming. Stay tuned!

Run II Property measurements @ 13 TeV

Will soon start a new era of Top quark analyses

Backup

13 Apr. 2016

	$m_{tar{t}}~[{ m GeV}]$						
$A_{ m C}$	< 420	420 - 500	500-600	600-750	0 750–900	> 900	
Data	0.026 ± 0.041	-0.005 ± 0.020	0.026 ± 0.021	$0.009 \pm 0.$	$027 -0.007 \pm 0.046$	0.068 ± 0.044	
SM	$0.0081\substack{+0.0003\\-0.0004}$	0.0112 ± 0.0005	$0.0114\substack{+0.0003\\-0.0004}$	$0.0134\substack{+0.0\\-0.0}$	$\begin{array}{c} 0003\\ 0005 \end{array} 0.0167^{+0.0005}_{-0.0006} \end{array}$	$0.0210\substack{+0.0003\\-0.0002}$	
Light BSM	0.0100 ± 0.0004	0.0134 ± 0.0006	$0.0135\substack{+0.0004\\-0.0005}$	$0.0155\substack{+0.0\\-0.0}$	$\begin{array}{c} 0005\\ 0006 \end{array} 0.0186 \substack{+0.0007\\ -0.0008 \end{array}$	$0.0235\substack{+0.0006\\-0.0005}$	
Heavy BSM	0.0089 ± 0.0004	0.0132 ± 0.0006	$0.0148\substack{+0.0004\\-0.0005}$	$0.0201\substack{+0.0\\-0.0}$	$\begin{array}{c} 0004\\ 0006 \end{array} 0.0310 \substack{+0.0006\\ -0.0007 \end{array}$	$0.0788\substack{+0.0007\\-0.0006}$	
		$\beta_{z,t\bar{t}}$		•			
$A_{ m C}$	< 0.3	0.3–0.6	0.6 - 1.0				
Data	-0.005 ± 0.034	0.054 ± 0.038	0.028 ± 0.011	-			
SM	0.0031 ± 0.0003	$0.0068 \begin{array}{c} +0.0002 \\ -0.0003 \end{array}$	$0.0175 \ {}^{+0.0007}_{-0.0008}$	-			
Light BSM	0.0037 ± 0.0004	0.0075 ± 0.0004	$0.0211 \begin{array}{c} +0.0007 \\ -0.0008 \end{array}$	Se	ource of systematic uncert	tainty $\delta A_{\rm C}$	
Heavy BSM	0.0048 ± 0.0004	0.0103 ± 0.0004	$0.0242 \begin{array}{c} +0.0007 \\ -0.0008 \end{array}$	(a) Je	et energy scale and resolut	tion 0.0016	
				- M	lultijet background norma	lisation 0.0005	
				(b) Ir	itial-/final-state radiation	0.0009	
1 ~	<i>p</i>	$T_{t\bar{t}}$ [GeV] 25–60	> 60	M D	lonte Carlo sample size	0.0010	
AC	< 25	20-00	> 00	P	DF	0.0007	
Data 0.04	4 ± 0.088 0.00	04 ± 0.066 0.	$.002 \pm 0.062$	St	tatistical uncertainty	0.0044	
SM 0.014	$1 \pm 0.0007 -0.00$	$051 \pm 0.0003 -0.$	0026 ± 0.0002		otal uncertainty	0.0049	

Charge Asymmetry - Backup

Charge Asymmetry (Boosted) - Backup

$m_{t\bar{t}}$ interval	> 0.75 TeV	0.75 – 0.9 TeV	0.9 – 1.3 TeV	> 1.3 TeV
Measurement	$(4.2 \pm 3.2)\%$	$(2.2 \pm 7.3)\%$	$(8.6 \pm 4.4)\%$	(-2.9 ± 15.0) %
SM prediction	$(1.60 \pm 0.04)\%$	$(1.42 \pm 0.04)\%$	$(1.75 \pm 0.05)\%$	$(2.55 \pm 0.18)\%$

FCNC (t \rightarrow Hq) - Backup

• Discriminant between signal and background:

$$D(x) = \frac{p^{Sig}(x)}{p^{Sig}(x) + p^{Bkg}(x)}$$

Mohammad J. Kareem

13 Apr. 2016

FCNC (t \rightarrow Hq) - Backup

13 Apr. 2016

FCNC (t \rightarrow qZ) - Backup

Sample	Yields
WZ	$1.3\pm0.2\pm0.6$
$t\bar{t}V$	$1.5\pm0.1\pm0.5$
tZ	$1.0\pm0.1\pm0.5$
Fake leptons	$0.7\pm0.3\pm0.4$
Other backgrounds	$0.2\pm0.1\pm0.1$
Total background	$4.7\pm0.4\pm1.0$
Data	3
Signal efficiency $[\times 10^{-4}]$	$7.8 \pm 0.1 \pm 0.8$

13 Apr. 2016

Mohammad J. Kareem

Topology reconstruction method:

Using kinematic properties of Top quark and Top anti-quark:

 $p_{\nu,x} + p_{\bar{\nu},x} = E_x^{\text{miss}},$ $p_{\nu,y} + p_{\bar{\nu},y} = E_y^{\text{miss}},$ $(p_{\ell^-} + p_{\bar{\nu}})^2 = m_{W^-}^2,$ $(p_{\ell^+} + p_{\nu})^2 = m_{W^+}^2,$ $(p_{W^-} + p_{\bar{b}})^2 = m_{\bar{t}}^2,$ $(p_{W^+} + p_b)^2 = m_t^2,$

- Using the two highest-ranked (first in b-tagging, then in p_T) jets in the algorithm
- The b- ℓ pari with lower invariant mass is first considered
 - If no solution found, Top quark mass is varied from the nominal value in steps of 1.5 GeV in range of [157.5, 187.5] GeV
 - If still no solution found, the alternative b- ℓ pair considered and the process repeated
 - If more than a solution found, the one with the minimum neutrinos transverse momentum product is selected
- 70% of signal simulated events and 50% of background events are reconstructed

Spin Correlation in Top Decay - Backup

Bin range	-1:-0.75	-0.75 : -0.5	-0.5 : -0.25	-0.25 : 0	0:0.25	0.25 : 0.5	0.5 : 0.75	0.75 : 1
Generator modeling	6.9	3.2	1.6	0.5	0.8	2.2	1.0	0.0
ISR/FSR	2.0	0.9	0.6	0.3	0.3	1.1	1.0	0.8
PDF	0.5	0.3	0.1	0.0	0.0	0.2	0.2	0.0
UE/color reconnection	1.5	1.1	1.0	0.7	0.1	0.5	0.6	3.1
JES/jet reconstruction	4.5	3.0	1.1	0.6	0.9	1.1	1.8	3.1
<i>b</i> -tagging SF	0.0	0.3	0.0	0.1	0.0	0.1	0.2	0.0
$E_{ m T}^{ m miss}$	0.5	0.6	0.4	0.1	0.1	0.3	0.2	0.0
Lepton reconstruction	1.5	0.6	0.1	0.3	0.1	0.5	0.6	0.8
Luminosity uncertainty	0.5	0.1	0.0	0.1	0.0	0.1	0.2	0.0
Background uncertainty	1.5	0.6	0.4	0.1	0.1	0.4	0.6	0.8
Bayesian unfolding method	10.9	0.6	2.3	1.4	1.0	2.6	0.6	7.8
Total	13.9	4.9	3.3	1.8	1.7	3.9	2.7	9.3
Top quark mass (±1 GeV)	0.1	0.2	0.1	0.2	0.1	0.3	0.0	0.6

Bin range	Unfolded data	MC@NLO prediction
	$1/\sigma d\sigma/d(\cos\theta_1 \cdot \cos\theta_2) \pm \text{stat.} \pm \text{syst.}$	$1/\sigma \mathrm{d}\sigma/\mathrm{d}(\cos\theta_1 \cdot \cos\theta_2) \pm \mathrm{stat.}$
-1.00 : -0.75	$0.0202 \pm 0.0020 \pm 0.0028$	0.0215 ± 0.0005
-0.75 : -0.50	$0.0696 \pm 0.0037 \pm 0.0034$	0.0707 ± 0.0008
-0.50 : -0.25	$0.1418 \pm 0.0045 \pm 0.0047$	0.1384 ± 0.0010
-0.25 : 0	$0.3106 \pm 0.0062 \pm 0.0057$	0.3079 ± 0.0014
0 : 0.25	$0.2882 \pm 0.0059 \pm 0.0048$	0.2884 ± 0.0013
0.25 : 0.50	$0.1078 \pm 0.0033 \pm 0.0042$	0.1118 ± 0.0009
0.50 : 0.75	$0.0489 \pm 0.0024 \pm 0.0013$	0.0484 ± 0.0006
0.75 : 1.00	$0.0129 \pm 0.0009 \pm 0.0012$	0.0129 ± 0.0003