Single top-quark production cross-section measurements using the ATLAS detector at the LHC

Patrick Rieck on behalf of the ATLAS collaboration

Humboldt-Universität zu Berlin

DIS 2016 April 13th

Single top-quark production

Three production modes

- t-channel
- Wt associated production
- s-channel (interference with t-channel negligible)
- Decay t→Wb, W→ℓv or W→qq'
 ⇒ complex event topologies
- Sensitivity to new phenomena
 - ► New forces (FCNCs, W', ...)
 - Coupling structure at the Wtq vertex
 - Flavour physics (V_{tq})

W*

POLDT

Σ

Wt production

s-channel

- *t*-channel cross-section measurement at $\sqrt{s} = 13 \text{ TeV}$
- Search for anomalous *Wtb* couplings in *t*-channel events at $\sqrt{s} = 7 \text{ TeV}$
- Wt production cross-section measurement at $\sqrt{s} = 8 \text{ TeV}$
- Evidence for s-channel single top-quark production at $\sqrt{s} = 8 \text{ TeV}$

t-channel cross-section measurement at $\sqrt{s} = 13$ TeV

Collision events

- t-channel: mode with highest rate
 - ► Sensitivity to PDFs b, u/d
- ► Dataset: √s = 13 TeV, £=3.2 fb⁻¹, recorded in 2015
- Selecting events with
 - ► Two jets, at least one *b*-tag, *p*_T > 30 GeV, |η| < 3.5 (|η_b-tag| < 2.5)</p>
 - One muon,
 *p*_T > 30 GeV, |η| < 2.5
 - Missing transverse momentum $E_{\rm T}^{\rm miss}$ > 30 GeV, $m_{\rm T}^{\rm W}$ > 50 GeV *
 - Veto against tt
 background no additional e or μ (loose object definition)
- In addition: two control regions (modelling validation)

*
$$m_{\mathrm{T}}^{\mathrm{W}} = \sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \varphi \left(p_{\mathrm{T}}^{\ell}, E_{\mathrm{T}}^{\mathrm{miss}} \right))}$$

[ATLAS-CONF-2015-079]

AOLD"

Σ

t-channel single top-quark production

Signal extraction

- Usage of a Neural Network to separate the signal from the backgrounds
- Max.-likelihood fit using the NN output distribution
- cross-section measurement

$$\sigma(tq) = 0.98 \pm 0.05 \cdot \sigma(tq)^{\text{SM,NLO}}$$

 $= 133 \, \text{pb} \pm 19\%$

$$\sigma(\bar{t}q) = 1.18 \pm 0.06 \cdot \sigma(\bar{t}q)^{\text{SM,NLC}}$$

= 96 pb ± 25%

► CKM matrix element $|f_{LV}V_{tb}|$ assuming $|V_{tb}| \gg |V_{ts}||V_{td}|$: $|f_{LV}V_{tb}|^2 = \sigma^{\text{observed}}/\sigma^{\text{SM,NLO}}$ $|f_{LV}V_{tb}| = 1.03 \pm 11\%$

Source	$\frac{\Delta\sigma(tq)}{\sigma(tq)}$ [%]	$\frac{\Delta\sigma(\bar{t}q)}{\sigma(\bar{t}q)}$ [%]
Data stat.	4.6	5.0
MC stat.	6.3	6.5
t-channel modelling	11	15
b-tagging	7.1	7.5
t-channel scale	5.9	7.7
Others	< 6 each	≤ 7 each
Total	19	25

Search for anomalous *Wtb* couplings in *t*-channel events at $\sqrt{s} = 7$ TeV

Model of the Wtb coupling

out the service of th

General structure of the Wtb-vertex:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}(g_LP_L + g_RP_R)tW_{\mu}^{-} + \text{h.c.}$$

 $(SM: V_L = V_{tb}, V_R = g_L = g_R = 0)$

 Measurement of angular distributions of l[±] in t-channel events

 \Rightarrow constraint the coupling structure

- Coordinate system, momenta in the top-quark rest-frame:
 - ► q : W-boson
 - ▶ p
 _s: spectator-quark
- Double-differential top-quark decay, parametrized in terms of anomalous couplings
- Sensitivity mostly to V_L and g_R

Results

t-channe = 7 TeV 4 7, Wt. s-chanr Auon signal regi W+iets Z+jets, Dibos Muble

[arXiv:1510.03764]

- Dataset: $\sqrt{s} = 7 \text{ TeV}$, $\mathcal{L} = 4.59 \text{ fb}^{-1}$, recorded in 2011
- Selection of a relatively pure sample of t-channel events, in particular
 - Untagged, forward jet $-|\eta| > 2$
 - ∑ p_T >210 GeV
 - *m_t* ∈[150 GeV,190 GeV]
 - $|\Delta \eta(\text{light jet}, b\text{-jet})| < 1$
- Definition of the probability density of $(\cos \theta^{\star}, \phi^{\star})$, construction of a likelihood fct.
- Results of a 2-dim. fit:

$$\operatorname{Re}\left[\frac{g_R}{V_L}\right] \in \left[-0.36, 0.10\right]$$
$$\operatorname{Im}\left[\frac{g_R}{V_L}\right] \in \left[-0.17, 0.23\right]$$

• First sim. measurement of Re $\left|\frac{g_R}{V}\right|$ and Im $\frac{g_R}{V_L}$ consistent with the SM

Wt production cross-section measurement at $\sqrt{s} = 8$ TeV

Wt measurement at $\sqrt{s} = 8 \text{ TeV}$

[JHEP01(2016)064]

AND TO UNIDES IT AND TO BERLIN

Wt process

- Associated production of a top-quark and a W-boson
- ► Interference with tt production O(a_S), but small within detector acceptance

ATLAS measurement

- Using $\sqrt{s} = 8 \text{ TeV}$, $\mathcal{L} = 20.3 \text{ fb}^{-1}$, selection:
 - Two charged leptons e or μ
 - One or two jets, one or two b-tags
 - Missing transverse momentum
- Boosted decision trees in signal and background regions to separate the signal, fit result:

• Significance of 7.7 σ (6.9 σ expected)

Wt fiducial cross-section measurement

[JHEP01(2016)064]

- Referring to a fiducial volume within the detector acceptance

 reduction of modelling uncertainties
- Wt and tt as one signal in the 1-jet 1-tag region

$$\sigma_{Wt}^{\text{fid}} = \frac{\mathsf{P}\left(\mathsf{fiducial} \,|\, \mathsf{selected}\right)}{\mathsf{P}\left(\mathsf{selected} \,|\, \mathsf{fiducial}\right)} \cdot \frac{\mathsf{N}_{\mathsf{sel}}}{\mathcal{L}}$$

$$= 0.85 \pm 0.01(\text{stat})^{+0.06}_{-0.07}(\text{syst}) \pm 0.03(\text{lumi}) \text{ pb}$$

$$\Delta_{
m rel}\sigma_{Wt}^{
m fid}=8.5\%)$$

Evidence for *s*-channel single top-quark production at $\sqrt{s} = 8$ TeV

Collision events

- Selecting events with
 - Two b-tagged jets, *p*_{T,1} > 40 GeV, *p*_{T,2} > 30 GeV, |η| < 2.5

 - ► One electron or muon, p_T > 30 GeV, |η| < 2.5</p>
 - Missing transverse momentum E_{T}^{miss} > 35 GeV, m_{T}^{W} > 30 GeV
 - Veto against tt background no additional e or µ (loose object definition)
- In addition: two control regions used for modelling validation
- Usage of a Matrix element method in order to separate the signal from the backgrounds – approximate signal probability P(S|X)

Event yields in the signal region, $\Sigma=14.000\,$

Signal discriminant distribution

[PLB(2016)228]

Clear separation between signal and background processes
 Possibility to measure the signal cross-section

Statistical evaluation

[PLB(2016)228]

20

- Profile likelihood fit of signal and background templates of P(S|X) to the data
- ► Test of B vs S+B hypothesis \Rightarrow observe 3.2 σ signal significance

First evidence for s-channel single top-quark production in pp collisions

cross-section measurement

$$\begin{array}{lll} \sigma_{\rm s} &=& 4.8^{+1.8}_{-1.6}\,{\rm pb} \\ &=& 0.86^{+0.31}_{-0.28}\cdot\sigma_{\rm s}^{{\rm SM},\,{\rm approx.\,NNLO}} \end{array}$$

- Agreement with the standard model
- Precision limited by data statistics

Source	$\frac{\Delta \sigma_s}{\sigma_s}$ [%]
Data stat.	16
MC stat.	12
Jet energy res.	12
t-channel generator	11
Others	< 10 each
Total	34

Summary

- Single top-quark production due to electroweak interactions
- Comprehensive measurements of SM processes and searches for new phenomena

Backup

20

t-Channel Measurements at $\sqrt{s} = 7 \text{ TeV}$

- Analysis similar to the \sqrt{s} =13 TeV measurement shown above
- Training of 2 Neural Networks 2-jet and 3-jet channel (I[±] combined)
- Choosing best separating variables as input, check variable modelling in control region similar to 2-jet selection but loosened b-tagging
 - > 2-jet channel: 13 variables $|\eta(j)|$, $m(l\nu b)$, m(jb) most important
 - ▶ 3-jet channel: 11 variables $\Delta y(j_1, j_2)$, $m(j_2j_3)$, $m(l\nu b)$ most important

t-Channel Measurements at $\sqrt{s} = 7 \text{ TeV}$

Signal Extraction

Max. likelihood fit of t-channel signal strength(s) to the NN discriminant in all 1-tag channels, event counting in 3-jet-2-tag channel

Cross-Sections

$$\sigma(tq+\bar{t}q) = 68 \pm 2(\text{stat.}) \pm 8(\text{syst.})\text{pb}$$

$$\sigma(tq) = 46 \pm 1(\text{stat.}) \pm 6(\text{syst.})\text{pb}$$

$$\sigma(\bar{t}q) = 23 \pm 1(\text{stat.}) \pm 3(\text{syst.})\text{pb}$$

$$R_t = 2.04 \pm 0.13(\text{stat.}) \pm 0.12(\text{syst.})$$

 All measurements in agreement with the standard model predictions.

Source	$\frac{\Delta R_t}{R_t}$ [%]	$\frac{\Delta \sigma(tq+\bar{t}q)}{\sigma(tq+\bar{t}q)}$ [%]
data stat. MC stat.	6.2 3.6	2.7 1.9
JES η intercalib. b-tagging ε Emiss Leptons PDF $tq \mu_R \& \mu_F$ others	<2 <2 <2 <2 2.5 <2 <2 <2 each	7.3 3.9 2.6 2.8 3.2 2.6 <2 each
Total	8.7	12.4

t-Channel Measurements at $\sqrt{s} = 7 \text{ TeV}$

Total Cross-Sections and top/anti-top Ratio

20

t-Channel Measurements at $\sqrt{s} = 7 \text{ TeV}$

- Using high purity region NN_{output} > 0.8 in 2-jet channels ⇒ S/B ≈ 2 for I⁺, S/B ≈ 1 for I⁻
- Normalization of samples according to cross-section fit results
- Unfolding of observed distributions to the parton level

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X_j} = \frac{1}{\Delta X_j} \cdot \frac{\sum_i M_{ij}^{-1} \cdot (\mathrm{Data}_i - \mathrm{Bkg}_i)}{\mathcal{L} \cdot \varepsilon_j}$$

Matrix Element Method (MEM)

Ansatz and implementation

[PLB(2016)228]

- ► $\mathcal{P}(X|H)$: p.d.f. of the event X given the scattering process H
- Approximation of $\mathcal{P}(X|H)$ by means of a factorization
 - Hard scattering leading order perturbation theory
 - Hadronization, detector effects: parametrizations known as transfer functions

- Development of a comprehensive MEM package from scratch
- ► Combination of several signal and background likelihoods P(X|H) into a signal discriminant P(S|X)

V_{tb} measurements using single top-quark provention

ATLAS+CMS Preliminary	LHC <i>top</i> WG	March 2016		
$ f_{1,y}V_{e} = \sqrt{\frac{\sigma_{max}}{\sigma_{max}}}$ from single top quark production				
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (201 PRD81 (2010) 054028	0) 054018,			
$\Delta \sigma_{\text{theo}}$ scale \oplus PDF		iotai ineo		
m _{top} = 172.5 GeV		$ f_{LV}V_{tb} \pm (meas) \pm (theo)$		
t-channel:				
ATLAS 7 TeV1 PRD 90 (2014) 112006 (4.59 fb-1)	⊢-1=1-1 ;	$1.02 \pm 0.06 \pm 0.02$		
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	⊢ +=+1	$0.97 \pm 0.09 \pm 0.02$		
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	H-jel-1	$1.020\pm 0.046\pm 0.017$		
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	- <mark> ●€</mark> -	$0.979 \pm 0.045 \pm 0.016$		
CMS combined 7+8 TeV JHEP 06 (2014) 090	Her.	$0.998 \pm 0.038 \pm 0.016$		
CMS 13 TeV CMS-PAS-TOP-15-004 (42 pb ⁻¹)	H	1.12 ± 0.24 ± 0.02		
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb ⁻¹)	 	$1.03 \pm 0.11 \pm 0.02$		
Wt:				
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)		$1.03 \substack{+0.15 \\ -0.18} \pm 0.03$		
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	· · · · · · · · · · · · · · · · · · ·	1.01 +0.16 +0.03 -0.13 -0.04		
ATLAS 8 TeV (*) ATLAS-CONF-2013-100 (20.3 fb ⁻¹)		$1.10 \pm 0.12 \pm 0.03$		
CMS 8 TeV 1 PRL 112 (2014) 231802 (12.2 fb ⁻¹)		$1.03 \pm 0.12 \pm 0.04$		
LHC combined 8 TeV ¹² ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009	⊢ + + + − - 1	$1.06\ \pm 0.11 \pm 0.03$		
s-channel: ATLAS 8 TeV ² arXiv:1511.05980 (20.3 fb ⁻¹)		$0.93 \ ^{+0.18}_{-0.20} \pm 0.04$		
Wt:				
ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	H-++=+++	1.01 ± 0.10 ± 0.03		
(*) Superseded by results shown below	w the line	¹ including top-quark mass uncertainty ² including beam energy uncertainty		
0.4 0.6 0	.8 1 1.2	1.4 1.6 1.8		
f _{LV} V _{tb}				

Cross-section predictions

- G. Bordes and B. van Eijk, Calculating QCD corrections to single top production in hadronic interactions, Nucl.Phys., B435:23-58, 1995
- ► T. Stelzer, Z. Sullivan, and S. Willenbrock, Single top quark production via W - gluon fusion at next-to-leading order, Phys.Rev., D56:5919-5927, 1997
- ► T. Stelzer, Z. Sullivan, and S. Willenbrock, *Single top quark production at hadron colliders*, Phys.Rev., D58:094021, 1998
- N. Kidonakis, Next-To-Next-To-Leading-Order Collinear and Soft Gluon Corrections for t-Channel Single Top Quark Production, Phys. Rev. D83 (2011) 091503, arXiv:1103.2792
- N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-, Phys. Rev. D 82 (2010) 054018, arXiv:1005.4451
- ► N. Kidonakis, NNLL Resummation for s-Channel Single Top Quark Production, Phys. Rev. D81 (2010) 054028 , arXiv:1001.5034