Measurements of the top quark mass using the ATLAS detector at the LHC

Michael Bender

on behalf of the ATLAS collaboration

Ludwig-Maximilians-Universität München

DIS 2016, 13.04.2016

Federal Ministry of Education and Research (*) talks by A. Hasib, P. Rieck

Cds.cem.ch, particlezoo.net

t-channel

 top quarks produced via strong and electroweak interactions

- comparatively large cross sections $^{(*)}$ @13TeV: $\sigma_{\rm t\bar{t}}~=$ 803 pb, $\sigma_{\rm t-chan}=$ 229 pb
 - $\Rightarrow\,$ millions of top quarks produced

data recorded by ATLAS				
2011:	$4.6 \ {\rm fb}^{-1}$	7 TeV		
2012:	$20.3 \ fb^{-1}$	8 TeV		
2015:	$3.2 \ {\rm fb}^{-1}$	13 TeV		

- top quarks decay electroweakly
- lifetime shorter than hadronization timescale
 - \Rightarrow study 'bare' quark properties
- decay proportional to $|V_{CKM}|^2$
 - \Rightarrow t \rightarrow Wb (\approx 100%)
 - \Rightarrow use b-tagging to select top events

Top Pair Branching Fractions

(only considering e/μ in leptonic channels)

top quark event topologies

fully hadronic

- 6 jets (2 bjets)
- no leptons
- no E_T^{miss} (0 ν)

dileptonic

- 2 bjets
- 2 leptons

E^{miss}_T (2 ν)

- 4 jets (2 bjets)
- 1 lepton

E_T^{miss} (1 ν)

- 2 jets (1 bjet)
- 1 lepton
- E^{miss}_T (1 ν)

Template measurements

- measure top quark mass as defined in MC
- choose observable sensitive to m_{top}
- fit signal distribution(s) for different simulated values of m_{top}
- establish linear dependence of fit parameters on m_{top} ($\hat{=}$ template)
- \Rightarrow fit template(s) to data and extract m_{top}

Cross section measurements

- exploit dependance of cross section on the top quark mass
- measure the inclusive cross section of tt production
- measure differential $t\bar{t} + 1$ -jet cross section
 - \Rightarrow extract m^{pole}_{top} from σ^{meas}_{top}

Fully hadronic channel @ 7 TeV [Eur. Phys. J. C (2015) 75:158]

- large QCD multijet background
 - $\Rightarrow \text{ high jet } p_T \text{ requirements and b-tagging} \\ \text{ to select fully-hadronic } t\overline{t}\text{-events}$
- estimate background from data (ABCD method)
- reconstruct tt-pair with kinematic fit
 - $\Rightarrow m_{top} = 175.1 \pm 1.4 \text{ (stat)} \pm 1.2 \text{ (syst) GeV}$

Lepton+jets & dilepton channel @ 7 TeV [Eur. Phys. J. C (2015) 75:330]

- 3d method in lepton+jets channel
 - kinematic reconstruction of the tt-pair
 - fit simultaneously m_{top}^{reco} , m_{W}^{reco} and R_{ba}^{reco}
- 1d fit to m_{lb}^{reco} in dilepton channel
- combine the two channels

 $\Rightarrow \ m_{top} = 173.0 \pm 0.5 \, (stat) \pm 0.8 \, (syst) \ \text{GeV}$

	$t\bar{t} \rightarrow$ lepton+jets	$t\bar{t} \rightarrow dilepton$	Combination
	$m_{\rm top}^{\ell+{ m jets}}$ [GeV]	$m_{\rm top}^{\rm dil}~[{\rm GeV}]$	$m_{\rm top}^{\rm comb}~[{\rm GeV}]$
Results	172.33	173.79	172.99
Statistics	0.75	0.54	0.48
Stat. comp. (mtop)	0.23	0.54	
Stat. comp. (JSF)	0.25	n/a	
Stat. comp. (bJSF)	0.67	n/a	
Method	0.11 ± 0.10	0.09 ± 0.07	0.07
Signal MC	0.22 ± 0.21	0.26 ± 0.16	0.24
Hadronisation	0.18 ± 0.12	0.53 ± 0.09	0.34
ISR/FSR	0.32 ± 0.06	0.47 ± 0.05	0.04
Underlying event	0.15 ± 0.07	0.05 ± 0.05	0.06
Colour reconnection	0.11 ± 0.07	0.14 ± 0.05	0.01
PDF	0.25 ± 0.00	0.11 ± 0.00	0.17
W/Z+jets norm	0.02 ± 0.00	0.01 ± 0.00	0.02
W/Z+jets shape	0.29 ± 0.00	0.00 ± 0.00	0.16
NP/fake-lepton norm.	0.10 ± 0.00	0.04 ± 0.00	0.07
NP/fake-lepton shape	0.05 ± 0.00	0.01 ± 0.00	0.03
Jet energy scale	0.58 ± 0.11	0.75 ± 0.08	0.41
b-Jet energy scale	0.06 ± 0.03	0.68 ± 0.02	0.34
Jet resolution	0.22 ± 0.11	0.19 ± 0.04	0.03
Jet efficiency	0.12 ± 0.00	0.07 ± 0.00	0.10
Jet vertex fraction	0.01 ± 0.00	0.00 ± 0.00	0.00
b-tagging	0.50 ± 0.00	0.07 ± 0.00	0.25
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.15 ± 0.04	0.04 ± 0.03	0.08
Leptons	0.04 ± 0.00	0.13 ± 0.00	0.05
Pile-up	0.02 ± 0.01	0.01 ± 0.00	0.01
Total	1.27 ± 0.33	1.41 ± 0.24	0.91

 m_{top} in single top t-channel enhanced topologies @ 8 TeV

t-channel enhanced analysis @ 8 TeV [ATLAS-CONF-2014-055]

- measure m_{top} with electroweakly produced tops
- \bullet signal region dominated by $t\overline{t}$ and W+jets
- using neural network to enhance t-channel fraction

 $\Rightarrow \ m_{top} = 172.2 \pm 0.7 \, (\text{stat}) \pm 2.0 \, (\text{syst}) \ \text{GeV}$

Process	SR	SR(NN > 0.75)
t-channel	18100 ± 1800	9100 ±1300
tt, Wt, s-channel	54200 ± 4300	4940 ± 600
W+jets	51000 ± 28000	4090 ± 2200
Z+jets, diboson	6900 ± 1700	360 ± 90
Multijet	12200 ± 6100	950 ± 480
Total expectation	142000 ± 29000	19470 ±2700
Data	143332	19833

	Value [GeV]
Measured value	172.2
Statistical uncertainty	0.7
Jet energy scale	1.5
Jet energy resolution	< 0.1
Jet vertex fraction	< 0.1
Flavour tagging efficiency	0.3
Electron uncertainties	0.3
Muon uncertainties	0.1
Missing transverse momentum	0.2
W+jets normalisation	0.4
W+jets shape	0.3
Z+jets/diboson normalisation	0.2
Multijet normalisation	0.2
Multijet shape	0.3
Top normalisation	0.2
t-channel generator	< 0.1
t-channel hadronisation	0.7
t-channel colour reconnection	0.3
t-channel underlying event	< 0.1
tt,Wt, and s-channel generator	0.2
tt hadronisation	< 0.1
tt colour reconnection	0.2
tt underlying event	0.1
tt ISR/FSR	0.2
Proton PDF	< 0.1
Simulation sample statistics	0.3
Total systematic uncertainty	2.0
Total uncertainty	2.1

DIS 2016, 13.04.2016 6 / 9

m_{top} from the inclusive $t\bar{t}$ cross-section @ 7 & 8 TeV

$\sigma_{t\bar{t}}$ analysis @ 7 & 8 TeV [Eur.Phys.J. C74 (2014) 3109]

- select dileptonic $e\mu$ top pair events
- measurement of $\sigma_{t\bar{t}}$ gives

$$\Rightarrow \sigma_{t\bar{t}} = 182.9 \pm 7.1 \text{ pb} \quad (\sqrt{s} = 7 \text{ TeV})$$

- $\Rightarrow \sigma_{
 m t\bar{t}} = 242.4 \pm 10.3 \ {
 m pb} \ (\sqrt{s} = 8 \ {
 m TeV})$
- extract m^{pole} and combine results

$$\Rightarrow m_{top}^{pole} = 172.9 \substack{+2.5 \\ -2.6}$$
 GeV

Δm_t^{pole} (GeV)	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Data statistics	0.6	0.3
Analysis systematics	0.8	0.9
Integrated luminosity	0.7	1.2
LHC beam energy	0.7	0.6
$PDF+\alpha_s$	1.8	1.7
QCD scale choice	+0.9 -1.2	+0.9 -1.3

Michael Bender (LMU München)

$t\overline{t}$ + 1-jet events @ 7 TeV [JHEP 10 (2015) 121]

• m^{pole}_{top} from differential cross section observable:

• estimator
$$\Re \propto rac{\mathrm{d}\sigma_{t\bar{t}+1\text{-}jet}}{\mathrm{d}\rho_s}$$
, with $\rho_s = rac{2m_0}{\sqrt{s_{t\bar{t}+1\text{-}jet}}}$

- correct distribution to parton level
- compare theoretical calculations to measurement

$$\Rightarrow m_{top} = 173.7 \pm 1.5 \, (stat) \pm 1.4 \, (syst) \, {}^{+1.0}_{-0.5} \, (theo) \, \text{GeV}$$

	Description	Value
		[GeV]
Î	m ^{pole}	173.71
	Statistical uncertainty	1.50
I	Scale variations	(+0.93, -0.44)
	Proton PDF (theory) and α_s	0.21
	Total theory systematic uncertainty	(+0.95, -0.49)
ĺ	Jet energy scale (including b-jet energy scale)	0.94
1	Jet energy resolution	0.02
	Jet reconstruction ef ciency	0.05
	b-tagging ef ciency and mistag rate	0.17
	Lepton uncertainties	0.07
	Missing transverse momentum	0.02
Î	MC statistics	0.13
	Signal MC generator	0.28
	Hadronization	0.33
I	ISR/FSR	0.72
	Colour reconnection	0.14
	Underlying event	0.25
	Proton PDF (experimental)	0.54
Î	Background	0.20
	Total experimental systematic uncertainty	1.44
1	Total uncertainty	(+2.29, -2.14)

[particlezoo.net]

Summary & outlook

- $\bullet\,$ measurements of m_{top} in different topologies with different methods
- finalizing run I top quark mass measurements \Rightarrow 8 TeV tt template results will be published soon
- looking forward to first 13 TeV m_{top} results

[particlezoo.net]

[AtlasPublic]

Michael Bender (LMU München)

Backup

mtop in the fully hadronic decay channel [Eur. Phys. J. C (2015) 75:158]

- Jet-based trigger
- \geq 6 jets with $p_{\rm T}$ > 30 GeV and $|\eta| < 2.5$
- \geq 5 jets with $p_{\rm T}$ > 55 GeV and $|\eta| < 2.5$
- $\Delta R > 0.6$ between pairs of jets with $p_{\rm T} > 30~{\rm GeV}$
- \bullet Jet vertex fraction JVF > 0.75
- \bullet Reject events w. isolated electrons with $E_{\rm T}>25~{\rm GeV}$
- \bullet Reject events w. isolated muons with $p_{\rm T}>20~{\rm GeV}$
- Exactly 2 *b*-tagged jets among the four leading jets
- Missing transverse momentum significance $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} < 3~{\rm GeV}^{1/2}$
- Centrality C > 0.6

$$N_F^{\text{bkg}}(x) = \frac{N_E^{\text{bkg}}}{2} \cdot \left(\frac{N_B^{\text{bkg}}(x)}{N_A^{\text{bkg}}} + \frac{N_D^{\text{bkg}}(x)}{N_C^{\text{bkg}}}\right)$$

		$p_T^{\text{bth jet}} \le 30 \text{ GeV}$			$p_T^{6th jet} > 3$	30 GeV
	gion R	$\begin{array}{ccc} {\rm Data} & {\rm Signal} & {\rm MC} \\ {\rm events} & {\rm events} & N_R^{\rm sig} \\ N_R^{\rm obs} \end{array}$		gion R	Data events N_R^{obs}	$\begin{array}{ll} {\rm Signal} & {\rm MC} \\ {\rm events} \; N_R^{\rm sig} \end{array}$
b-tagged jets	ž	signal	fraction	ž	signal	fraction
0	A	93,732	306 ± 4	B	286,416	2607 ± 11
		$0.33 \pm 0.01\%$		1	0.91 :	$\pm 0.01\%$
1	C	23,536	678 ± 5	D	77, 301	5117 ± 14
		$2.88 \pm 0.04\%$		1	6.62 :	$\pm 0.04\%$
2	E	4,532	399 ± 5	F	15,551	2582 ± 13
		$8.80 \pm 0.29\%$		1	16.60 :	$\pm 0.27\%$

DIS 2016, 13.04.2016

R_{3/2}

11 / 9

lepton+jets			
e channel μ channel			
leptor	n trigger		
one char	gerd lepton		
$E_{T}^{miss} > 30 \text{GeV}$	$E_{\rm T}^{\rm miss} > 20~{\rm GeV}$		
$m_{\rm T}^{\rm W} > 30~{\rm GeV}$	$E_{T}^{miss} + m_{T}^{W} > 60 GeV$		
\geq 4 jets, p _T > 2	25 GeV, $ \eta < 2.5$		
≥ 1 b-1	tagged jet		
dile	epton		
ee/ $\mu\mu$ channel	e/ μ channel		
leptor	n trigger		
two oppositely	charged leptons		
$E_{T}^{miss} > 60 {\rm GeV}$	${ m H_T}$ $>$ 130 GeV		
$\rm m_{ }>15~GeV$			
$ m_{II}-m_{Z} >10~\text{GeV}$			
\geq 2 jets, p $_{ m T}$ $>$ 25 GeV, $ \eta $ $<$ 2.5			

1 o	2	b-tagged	jet(s)
-----	---	----------	--------

	tt → lepton+jets		tt → dilepton Combination		ion	
	m _{top} [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	mtop [GeV]	ρ
Results	172.33	1.019	1.003	173.79	172.99	
Statistics	0.75	0.003	0.008	0.54	0.48	0
- Stat. comp. (m _{top})	0.23	n/a	n/a	0.54		
- Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
- Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ±0.10	0.001	0.001	0.09 ±0.07	0.07	0
Signal MC	0.22 ±0.21	0.004	0.002	0.26 ±0.16	0.24	+1.00
Hadronisation	0.18 ±0.12	0.007	0.013	0.53 ±0.09	0.34	+1.00
ISR/FSR	0.32 ±0.06	0.017	0.007	0.47 ±0.05	0.04	-1.00
Underlying event	0.15 ±0.07	0.001	0.003	0.05 ±0.05	0.06	-1.00
Colour reconnection	0.11 ±0.07	0.001	0.002	0.14 ±0.05	0.01	-1.00
PDF	0.25 ±0.00	0.001	0.002	0.11 ±0.00	0.17	+0.57
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ±0.00	0.02	+1.00
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ±0.00	0.16	0
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ±0.00	0.07	+1.00
NP/fake-lepton shape	0.05 ±0.00	0.000	0.001	0.01 ±0.00	0.03	+0.23
Jet energy scale	0.58 ±0.11	0.018	0.009	0.75 ±0.08	0.41	-0.23
b-jet energy scale	0.06 ±0.03	0.000	0.010	0.68 ±0.02	0.34	+1.00
Jet resolution	0.22 ±0.11	0.007	0.001	0.19 ±0.04	0.03	-1.00
Jet ef ciency	0.12 ± 0.00	0.000	0.002	0.07 ±0.00	0.10	+1.00
Jet vertex fraction	0.01 ±0.00	0.000	0.000	0.00 ±0.00	0.00	-1.00
b-tagging	0.50 ± 0.00	0.001	0.007	0.07 ±0.00	0.25	-0.77
E ^{miss}	0.15 ±0.04	0.000	0.001	0.04 ±0.03	0.08	-0.15
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ±0.00	0.05	-0.34
Pile-up	0.02 ±0.01	0.000	0.000	0.01 ±0.00	0.01	0
Total	1.27 ± 0.33	0.027	0.024	1.41 ±0.24	0.91	-0.07

mtop in lepton+jets & dilepton decay channel II [Eur. Phys. J. C (2015) 75:330]

13 / 9

Variable	loss of total correlation (%)	Variable	loss of total correlation (%)
$m(\ell vb)$	38	E ^{miss}	7
m(jb)	31	$m_T(W)$	7
m(lb)	18	$\cos \theta(\ell, j)$ in the top quark rest frame	6
n (j)	14	$p_T(W)$	3
η(ℓν)	13	η(<i>lνb</i>)	2
$H_T(\ell, jets, E_T^{miss})$	10	$\Delta R(\ell,\ell\nu b)$	1

Event selection

- Iepton trigger
- oppositely charged pair of e and μ
- one b-tagged or two b-tagged jet(s) with $p_T>25$ GeV, $|\eta|<2.5$

Event counts	$\sqrt{s} = 7 \text{ TeV}$		$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	
	N1	N2	N1	N_2	
Data	3527	2073	21666	11739	
Wt single top	326 ± 36	53 ± 14	2050 ± 210	360 ± 120	
Dibosons	19 ± 5	0.5 ± 0.1	120 ± 30	3 ± 1	
$Z \rightarrow \tau \tau \rightarrow e \mu$) +jets	28 ± 2	1.8 ± 0.5	210 ± 5	7 ± 1	
Misidentif ed leptons	27 ± 13	15 ± 8	210 ± 66	95 ± 29	
Total background	400 ± 40	70 ± 16	2590 ± 230	460 ± 130	

$$\sigma_{t\bar{t}}^{\text{theo}}(m_t^{\text{pole}}) = \sigma(m_t^{\text{ref}}) \left(\frac{m_t^{\text{ref}}}{m_t^{\text{pole}}}\right) (1 + a_1x + a_2x^2)$$

$$= \frac{1}{5} \left(\frac{1}{5} - \frac{ATLAS}{(1 + a_1x)^2} - \frac{--MSTW 2008 NNL0}{(1 + a_1x)^2} - \frac{--MSTW 2008$$

Uncertainty \sqrt{s}	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%)		
	7 TeV	8 TeV	
Data statistics	1.69	0.71	
$t\bar{t}$ modelling and QCD scale	1.46	1.26	
Parton distribution functions	1.04	1.13	
Background modelling	0.83	0.83	
Lepton eff ciencies	0.87	0.88	
Jets and b-tagging	0.58	0.82	
Misidentif ed leptons	0.41	0.34	
Analysis systematics $(\sigma_{t\bar{t}})$	2.27	2.26	
Integrated luminosity	1.98	3.10	
LHC beam energy	1.79	1.72	
Total uncertainty	3.89	4.27	

- lepton trigger
- one lepton (e/ μ)
- \geq 5 jets, p_T > 25 GeV, $|\eta|$ < 2.5
- $\bullet~5^{th}$ jet $p_T > 50~\text{GeV}$
- two b-tagged jets

•
$$E_T^{miss} > 30$$
 GeV & $m_T^W > 30$ GeV

•
$$0.9 < \frac{m_W}{m_{jj}} < 1.25$$
 & $\frac{m_{top}^{leptonic}}{m_{top}^{hadronic}} > 0.9$

	Events	Un	certainty
Signal $(t\bar{t}, m_t = 172.5 \text{ GeV})$	2050	±	320
W+jets	31	±	16
Z+jets	6	±	4
Single top $(m_t = 172.5 \text{ GeV})$	62	\pm	34
WW, ZZ, WZ	1	\pm	1
Misidentified and non-prompt leptons	22	\pm	13
Total Background	121	±	40
Total Predicted	2170	\pm	320
Data	2256		

$$\begin{split} \mathfrak{R}\left(\mathsf{m}_{\mathsf{top}}^{\mathsf{pole}},\rho_{s}\right) &= \frac{1}{\sigma_{t\bar{t}+1\text{-}jet}} \frac{\mathrm{d}\sigma_{t\bar{t}+1\text{-}jet}}{\mathrm{d}\rho_{s}} \left(\mathsf{m}_{\mathsf{top}}^{\mathsf{pole}},\rho_{s}\right) \\ & \text{with } \rho_{s} = \frac{2m_{0}}{\sqrt{s_{t\bar{t}+1\text{-}jet}}} \end{split}$$

