Measurements of underlyingevent properties with the ATLAS detector

David Milstead Stockholm University

Underlying Event Outgoing Parton Transverse Toward ISR. Hard Scatter Incoming Incoming Incoming Incoming Parton Parton Proton Proton Outgoing FSR Parton Transverse Beam Remnants Beam Remnants Underling event = everything that does not originate from the hard scatter Incoming Proton partons. pp Collision Outgoing Parton Model dependent parts: MPI In comming Parton

Incoming

Proton

Parton

Outgoing Parton

- Beam-beam remnants
- Multiple parton interactions
- Initital state radiation
- Final state radiation

Underlying event in Drell-Yan events

No colour charge on $Z \Rightarrow$ event properties with Z-decay products removed sensitive to UE. Arxiv: 1602.08980 (hep-ex)

UE in Drell-Yan events

- $\sqrt{s} = 7 \text{ TeV}$ (2011)
- Luminosity = 1.1 fb⁻¹
 Mean *pp* collisions per BC ~ 5
- Dilepton events : e^+e^- , $\mu^+\mu^-$: $m_{\ell^+\ell^-} \in [66,116]$ GeV, $p_{T,\ell} > 20$ GeV, $|\eta_{\ell}| < 2.4$
- Track selection: $p_T > 0.5$ GeV, $|\eta| < 2.5$ + quality cuts.
- Pile-up correction
- Correction for multi-jet bg

Event shape observables

Distributions for observable O : $f_o = \frac{1}{N_{ev}} \cdot \frac{dN}{dO}$

- Charged particle multiplicity N_{ch}
- Scalar sum of charged particles p_T : $\sum p_T$
- Beam thrust : $B = \sum p_T e^{-|\eta|}$
- Transverse thrust : $T = \max_{\vec{n}_T} \frac{\sum |\vec{p}_T \cdot \vec{n}_T|}{\sum p_T}$; $\vec{n}_T = \text{thrust axis}$

• Spherocity :
$$S = \frac{\pi^2}{4} \min_{\vec{n} = (n_x, n_y, 0)^T} \left(\frac{\sum |\vec{p}_T \times \vec{n}|}{\sum p_T} \right)^2$$

• *F*-parameter : $\frac{\lambda_1}{\lambda_2}$ = Ratio of smaller and larger eigenvalues

of
$$M^{lin} = \sum_{i} \frac{1}{p_{T,i}} \begin{pmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{x,i} p_{y,i} & p_{x,i}^2 \end{pmatrix}$$

Z decay products removed before calculating O Corrected distributions after Bayesian unfolding.

Event shape observables

"Pencil-like" events "Spherical" events $S \sim 0, T \sim 1, F \sim 0$ $S \sim 1, T \sim \frac{2}{\pi}, F \sim 1$ S, T, F correlated amongst themselves but weakly correlated with $N_{ch}, \sum p_T$ and B

Event shape distributions: $Z \rightarrow e^+ + e^-$

Monte Carlo models

Generator	Tune/setting	PDF
Pythia 8	Monash	NNPDF2.3LO
Sherpa 2.2.0	Default	NNPDF 3.0 NNLO
Herwig7	Default	MMHT2014

Best agreement for Pythia,Herwig and Sherpa as $p_T(\mu^+\mu^-)$ and N_{ch} increase. Difficult to achieve agreement at low N_{ch} - Herwig 7 is closest. Larger deviations with Sherpa.

Best agreement for Pythia, Herwig and Sherpa as $p_T(e^+e^-)$ and $\sum p_T$ increase. Difficult to achieve agreement at low $\sum p_T$ - Herwig 7 is closest. Larger deviations with Sherpa.

dNVS S ; $Z \rightarrow e^+ + e^$ dSN

Low jet activity $p_T(e^+e^-)$

Best agreement for Pythia, Herwig and Sherpa as $p_T(e^+e^-)$ and S increase.

Pythia generally closest to the data.

Larger deviations with Sherpa.

Model performance at low $p_T: 0-6$ GeV

Less chance of a hard process jet at low $p_T \Rightarrow UE$ sensitivity.

Observables which are not very sensitive to number of tracks (T, S, F): Best description by Pythia

Observables which are very sensitive to number of tracks $(N_{ch}, \sum p_T, B)$:

Best description by Herwig

Largest deviations with Sherpa.

Similar observations for p_T : 6-12 GeV, 12-25 GeV.

Model performance for $p_T > 25$ GeV

 p_T >25 GeV \Rightarrow at least one high p_T jet recoiling against the Z. Better agreement of data-models than for low p_T Best descriptions by Pythia8 and Herwig7 and largest deviations with Sherpa.

Systematic uncertainties

 $6 < p_T (\ell^+ \ell^-) < 12 \text{ GeV}$

Observable	Channel	δ_{O}^{stat}	δ_O^{Lepton} [%]	$\delta_O^{\text{Tracking}}$ [%]	$\delta_O^{\text{Non-Prim.}}$	δ_O^{PU} [%]	$\delta_O^{\text{Multijet}}$ [%]	δ_O^{Unfold} [%]
N	(e^+e^-)	1_10	0.1_2.2	0.2_10	02-66	0.1_24	< 0.1_0.2	< 0.1-10
2 ° Ch	$(\mu^+\mu^-)$	0.8-8.4	0.1-1.8	< 0.1–11.4	0.1-4.5	0.6-21	< 0.1-0.2	0.7–7.7
$\sum p_{\mathrm{T}}$	(e^+e^-)	1-2.3	0.1-0.5	0.1-5.3	< 0.1–1.9	0.4-2.9	< 0.1–0.3	< 0.1–1.8
	$(\mu^{+}\mu^{-})$	0.8-1.8	0.1-0.6	< 0.1–4.9	< 0.1–1.4	0.1-3.2	< 0.1–0.3	0.1-1.7
${\mathcal B}$	(e^+e^-)	0.7-8.8	0.1-1.5	0.2-4.3	0.1-1.5	< 0.1–19	< 0.1–1	< 0.1–2.4
	$(\mu^{+}\mu^{-})$	0.6-6.7	0.1 - 1	0.3-3.9	< 0.1 - 1.9	0.1 - 10	< 0.1–0.6	0.1-2.4
\mathcal{T}	(e^+e^-)	0.6-4.7	0.1-0.5	0.2-2.2	0.1-1.5	0.1-2.9	0.1-0.5	0.1 - 2.5
	$(\mu^{+}\mu^{-})$	0.5-3.7	0.1 - 1	0.2 - 2.8	0.1-1	0.1-4.4	< 0.1	0.2 - 2.7
S	(e^+e^-)	0.6-3.6	0.1-0.3	0.2-2.4	0.1-1.6	0.1-5.0	0.1 - 0.4	0.2-3.4
	$(\mu^{+}\mu^{-})$	0.5-2.9	0.2-0.7	0.2 - 2.2	0.1-1.1	0.1-4.4	< 0.1	0.1-3.1
${\mathcal F}$	(e^+e^-)	0.6-3.8	0.1-0.4	0.1 - 2.0	0.1-0.9	0.1-7.4	0.1-0.4	0.2-2.7
	$(\mu^{+}\mu^{-})$	0.5-3.0	0.1-0.6	0.1 - 2.4	0.1-1.3	0.1-1.6	< 0.1	0.1-3.2

Uncertainties from tracking efficiency, lepton reconstruction/ID, non-primary bg, pile-up correction, multijet bg, and unfolding. Total systematic uncertainties: ~5-10% $(N_{ch}, \sum p_T, B)$: ~2-5% (S, F, T)

Leading track UE studies at 13 TeV

- ATL-PHYS-PUB-2015-019
- 13 TeV
- Luminosity = 170 μ b⁻¹
- At least one minimum bias counter above threshold
- Leading track $p_T > 1 \text{ GeV}$
- Primary vertex
- No extra vertex with >3 tracks.

Non-colliding beam bg < 0.01%

Tracks from additional interactions < 0.01%

Track selection: $p_T > 0.5$ GeV, $|\eta| < 2.5 + quality$ cuts.

Kinematic regions and observables

Detector level observables

Observable	Definition
$\langle \mathrm{d}^2 N_{\mathrm{ch}}/\mathrm{d}\eta\mathrm{d}\phi\rangle$	Number of tracks per unit $\eta - \phi$
$\langle \mathrm{d}^2 \sum p_\mathrm{T} / \mathrm{d}\eta \mathrm{d}\phi \rangle$	Scalar sum of track $p_{\rm T}$ per unit η - ϕ

Monte Carlo models

Generator	Tune	PDF	Focus
Pythia 8	A2	MSTW2008LO	MB
Pythia 8	Monash	NNPDF2.3LO	MB/UE
Pythia 8	A14	NNPD2.3LO	UE/Shower
Herwig++ 2.7.1	UEEE5	CTEQ6L1	UE
EPOS	LHC		MB

Tunes use data from different experimental processes

Expect a gradual transition from MB to hard scattering events. MB tunes better at low p_T^{lead} ;UE tunes do better at high p_T^{lead} Herwig++ not expected to give a good description for MB at low p_T^{lead}

Pythia 8 and Herwig++ tunes closest to the data.

Summary

- Measurements sensitive to the underlying event measured by ATLAS
- Event shapes in Drell-Yan events (7 TeV)
- Final state distributions in minimum bias data (13 TeV)
- Large discriminatory power between phenomenological models of the UE.

 $\frac{1}{N_{ev}} \cdot \frac{dN}{dF}$ vs dF ; $Z \rightarrow \mu^+ + \mu^-$

Low jet activity

High jet activity

 $p_T\left(\mu^+\mu^ight)$