

Top quark pair production cross section using the ATLAS detector

iet

jet

Antiproton

Hasib Ahmed [University of Oklahoma] on behalf of ATLAS collaboration

XXIV International Workshop Deep-Inelastic Scattering April 13th 2016

FR

Proton -

WAVP

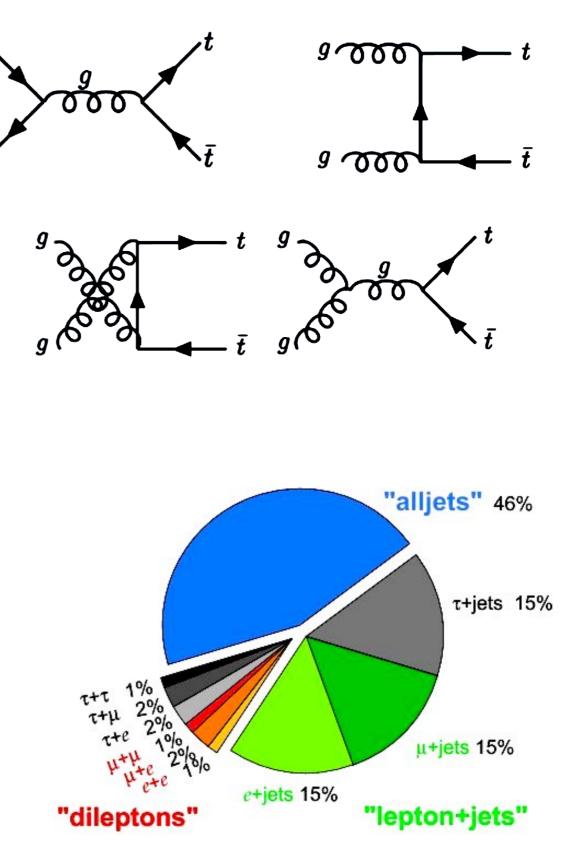
jet

The University of Oklahoma

- Top quark pair production and decay
- Inclusive cross section:
 - \bullet eµ events at 7,8 and 13 TeV
 - e/μ +jets events at 13 TeV
 - $ee/\mu\mu$ events at 13 TeV
- Differential cross section:

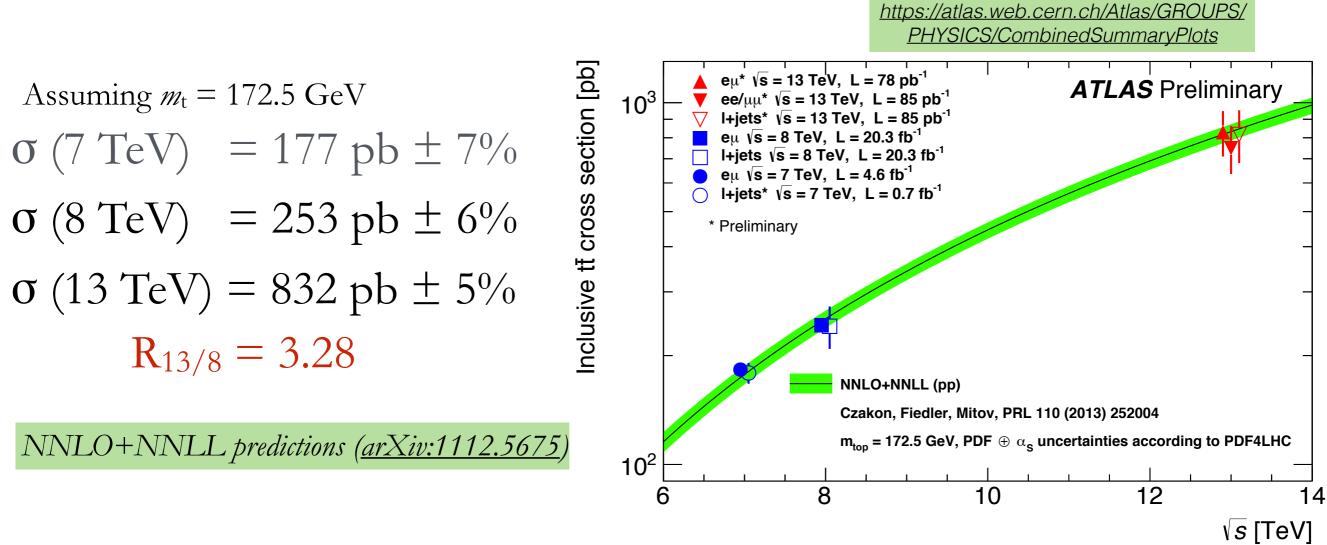
Hasib Ahmed(OU)

- * Resolved top quark pair in e/μ events at 8 TeV
- * Boosted top quark pair in e/μ events at 8 TeV


For tt+X: See the talk by Alexander Khanov

More results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Top quark pair production and decay

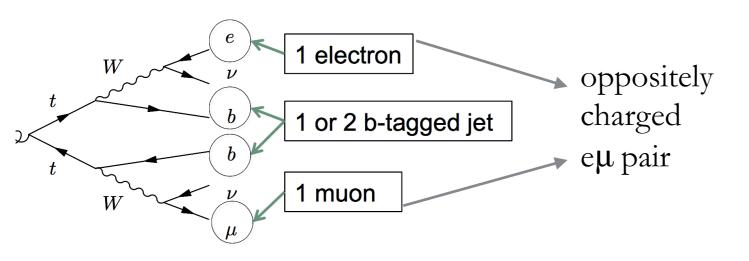


- LHC is a top quark factory
- Pair production through:
 - gluon-gluon fusion ~ 87%
 - quark-quark interaction $\sim 13\%$
 - Top quark pair decay
 t → Wb ≈ 100%
 - Final state categorized by the W decays:
 dilepton (ee/μμ/eμ) ~5%
 lepton (e/μ) + jets ~ 30%
 - all jets and τ -lepton decay modes

Q Inclusive cross section $\sigma(tt)$

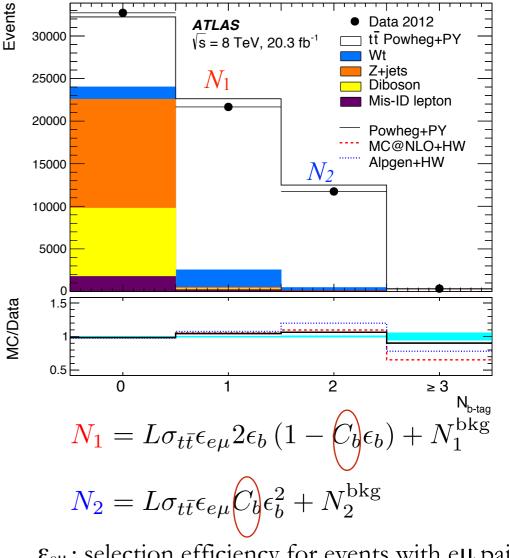
- Provides precision test of the Standard Model :
 - perturbative QCD and NNLO calculations
- Sensitive to fundamental parameters : $\hat{\sigma} \propto (\alpha_s/m_t)^2 f(\alpha_s,\beta)$
- Sensitive to Beyond SM physics

Will focus on the most recent results ...



Q Inclusive $\sigma(tt)$: eµ events at 7 & 8 TeV

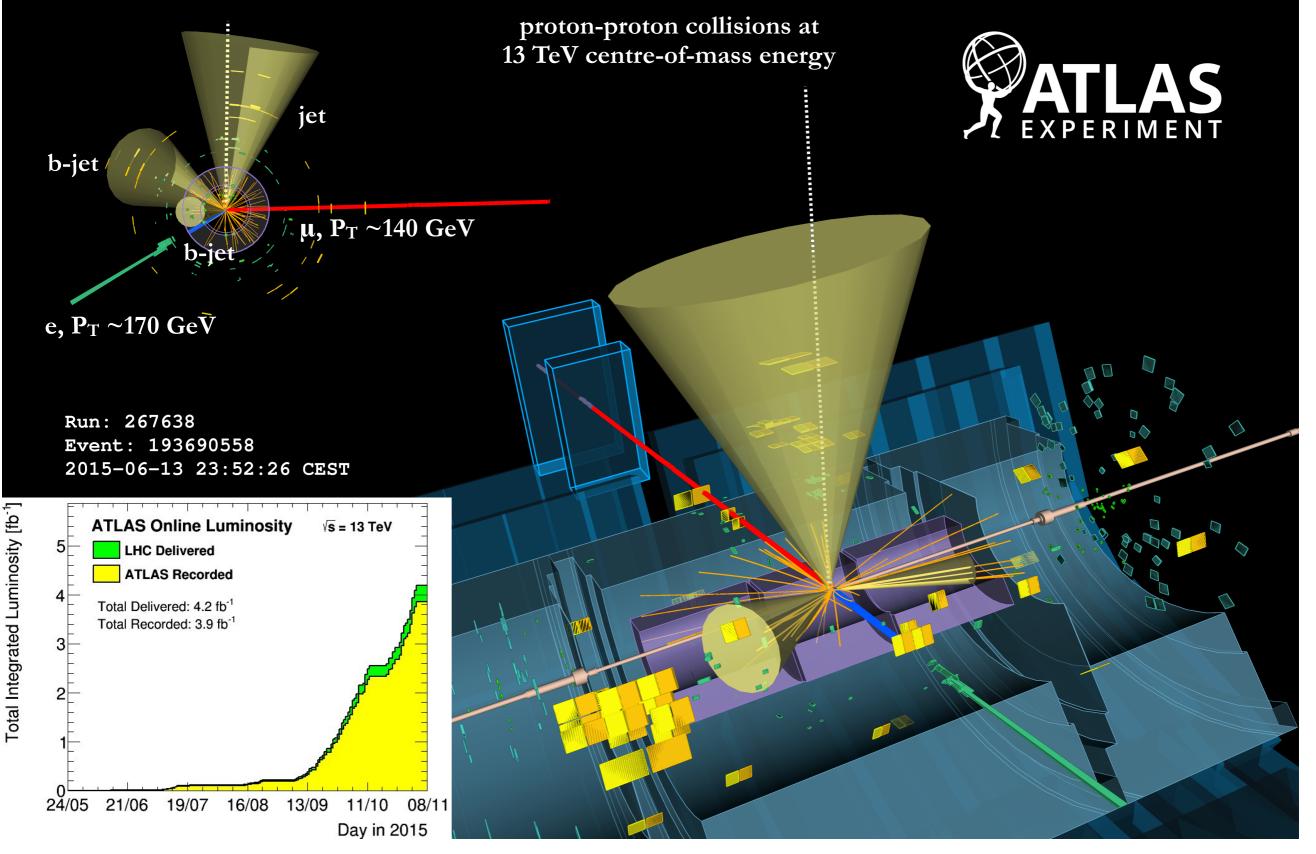
Eur.Phys. J. C74 (2014) 3109


Most precise results, more precise than theory!

Large b-tag uncertainties → determine efficiency from data

Likelihood fit to simultaneously determine:

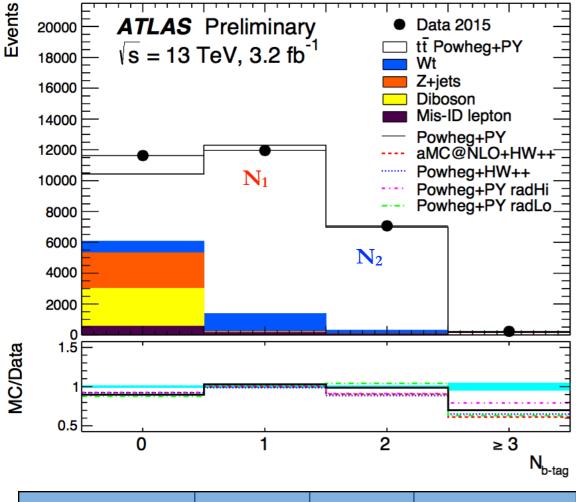
- inclusive cross section
- b-tag efficiency


 $\varepsilon_{e\mu}$: selection efficiency for events with $e\mu$ pairs ε_b : efficiency to identify and b-tag a jet <u> C_b : correlation between 1 or 2 b-tag (= 1.007)</u>

 $\sigma(tt) = 182.9 \pm 3.1(stat) \pm 4.2(syst) \pm 3.6(lumi) \pm 3.3(beam) \text{ pb} (7 \text{ TeV}, 4.6 \text{ fb}^{-1}) \sim 3.9\%$ $\sigma(tt) = 242.4 \pm 1.7(stat) \pm 5.5(syst) \pm 7.5(lumi) \pm 4.2(beam) \text{ pb} (8 \text{ TeV}, 20.3 \text{ fb}^{-1}) \sim 4.3\%$

Top quark pair at 13 TeV!

https://twiki.cern.ch/twiki/bin/ view/AtlasPublic/ TopPublicResults



Inclusive $\sigma(tt)$: $e\mu$ events at 13 TeV

TeV $\int \mathcal{L} dt = 3.2 \text{ fb-1}$ Full 2015 $d_{ataset!}$

Same method as 7 & 8 TeV measurements

Event Count	\mathbf{N}_1	\mathbf{N}_2	Estimation
Data	11958	7069	
Single top	1160±120	224 ±70	simulation
Dibosons	34±12	1±0	simulation
$Z(\rightarrow \tau \tau \rightarrow e \mu) + jets$	37±16	2±1	simulation+data
Misidentified leptons	165±65	116±55	simulation+ data
Total background	1390±140	343±89	
Signal purity	89%	96%	

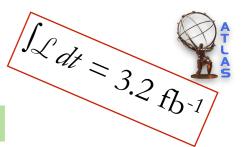
• Oppositely charged eµ events:

• lepton $p_T > 25$ GeV, $|\eta| < 2.5$

• Dominant background:

- ▶ single top (Wt-channel) estimated in simulation
- Large theory uncertainty for Z+jets cross section:
 - measure the rates of Z → ee and Z → µµ in both data and simulation
 - scale the simulated $Z \rightarrow \tau \tau$ +jets with the ratio

• Large uncertainty on ttbar modeling :


- due to lepton isolation efficiency
- measured in-situ

• Misidentified lepton:

- \blacktriangleright measured in data with same sign charged $e\mu$ events
- The cross section is measured both in <u>full phase space</u> volume and <u>fiducial volume</u>.

Hasib Ahmed(OU)

Q Inclusive $\sigma(tt)$: eµ events at 13 TeV

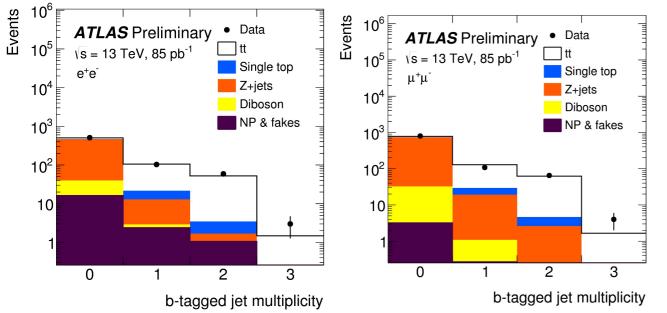
ATLAS-CONF-2016-005

Uncertainty	Δσ/σ [inclusive]	Δσ/σ [fiducial]	
Data statistics	0.9	0%	
NLO modeling Compare MadGraph+Herwig++ and Powheg+Herwig++	0.8%	0.6%	
Hadronization Compare Powheg+Pythia6 and Powheg+Herwig++	2.8%	1.9%	
PDF Compare CT10 and NNPDF 3.0	0.5%	0.1%	
Integrated luminosity	5.5%		
LHC beam energy	1.5	5%	
Experimental 1.5%			
Total uncertainty	6.7%	6.3%	

Extrapolation to full phase space volume:

 $\sigma(tt) = 803 \pm 7 \text{ (stat)} \pm 27 \text{ (syst)} \pm 45 \text{ (lumi)} \pm 12 \text{ (beam) pb}$ 0.8% 3.3% 5.5% 1.5% $\Delta\sigma/\sigma = 6.7\%$

Measurement in the fiducial volume:


 $\sigma^{fid}(tt) = 11.12 \pm 0.10 \text{ (stat)} \pm 0.28 \text{ (syst)} \pm 0.62 \text{ (lumi)} \pm 0.17 \text{ (beam) pb}$

$\int \mathcal{L} dt = 85 \text{ pb-1}$ Inclusive $\sigma(tt)$: <u>ee/µµ</u> and <u>e/µ+jets</u> events at 13 TeV

ATLAS-CONF-2015-049

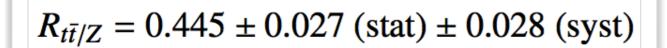
• Oppositely charged ee or $\mu \mu$ events: • lepton $p_T > 25$ GeV, $|\eta| < 2.5$

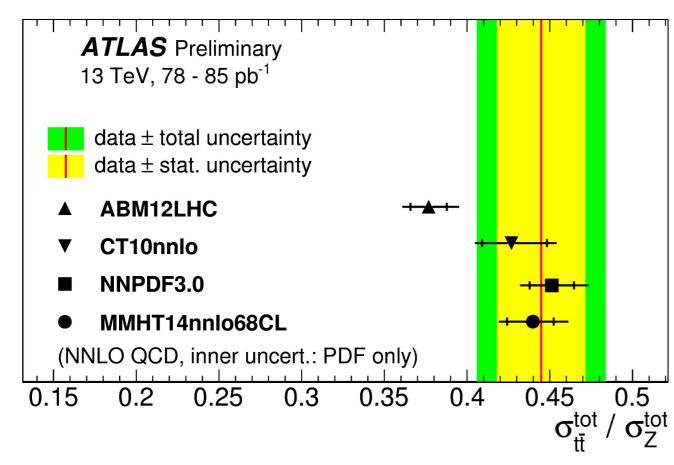
• Same method as eµ analysis:

- Dominant background Z+jets:
 - suppressed by vetoing Z mass
 - normalized in data region with high purity Z+jets events

 $\sigma(tt) = 749 \pm 57 \text{ (stat)} \pm 79 \text{ (syst)} \pm 74 \text{ (lumi) pb}$ 11% 8% 10% $\Delta \sigma / \sigma = 16\%$ (ee/µµ)

ATLAS-CONF-2015-049


- Exactly one e/μ events: • lepton $p_T > 25$ GeV, $|\eta| < 2.5$
- Cross section measured by counting number of events:


$$\sigma = (N_{data} - N_{background})/\epsilon L$$

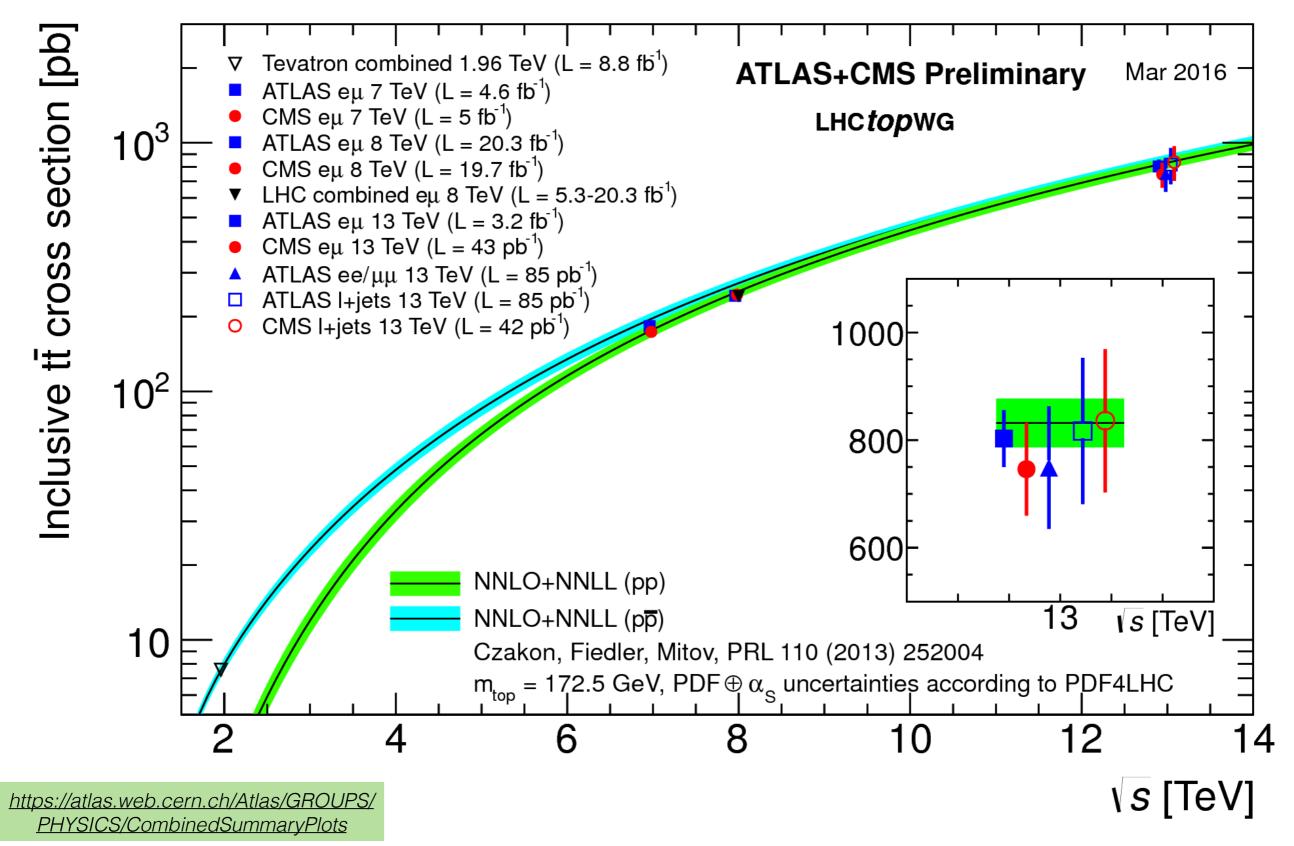
- Non-prompt/fake background estimated in data
- Dominant background W+jets: suppressed by requiring at least 4 jets at least 1 b-tag normalized in data using W boson charge asymmetry measurement $\sigma(tt) = 817 \pm 13 \text{ (stat)} \pm 103 \text{ (syst)} \pm 88 \text{ (lumi) pb}$ 2%13% 11% $\Delta \sigma / \sigma = 17\%$ (e/µ+jets)

Patio of \sigma(tt) and \sigma(Z)

- Expected to cancel the large uncertainty from integrated luminosity
- Significant constraint on the qq/gg ratio in protons
- $\sigma(tt)$ measured in $e\mu$ events and $\sigma(Z)$ is measured in $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events

Uncertainty	σ(Z≁ee)	σ(Z ≁μμ)	σ(tt)	Ratio
Data statistics	0.5%	0.5%	6.0%	6.0%
Analysis systematics	4.4%	2.3%	6.7%	6.3%
Luminosity	9.0%	9.0%	10.0%	1.0%
Total	10.0%	9.3%	13.5%	8.8%

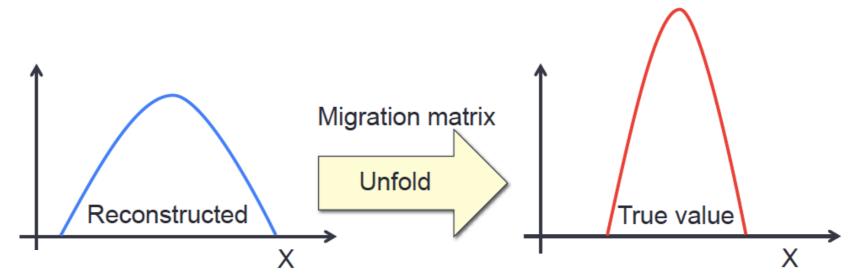
ATLAS-CONF-2015-049


 $\int \mathcal{L} dt = 78 - 85 \text{ pb-1}$

- Result is compared to prediction:
 - ▶ FEWZ for Z production
 - top++ for top pair production
- PDF predictions tested mostly compatible with data
- Some tension with ABM12LHC PDF set
 - → predicts 12% smaller $\sigma(tt)$

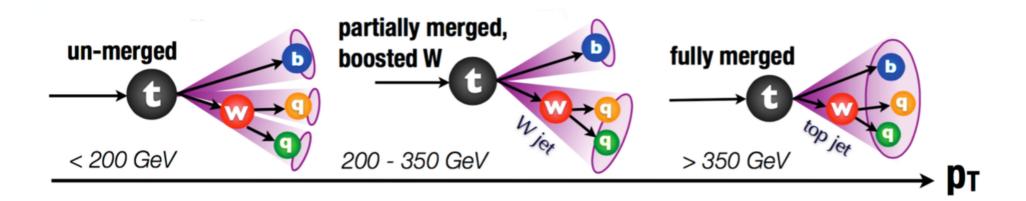
Further room to explore different ratios in Run 2!

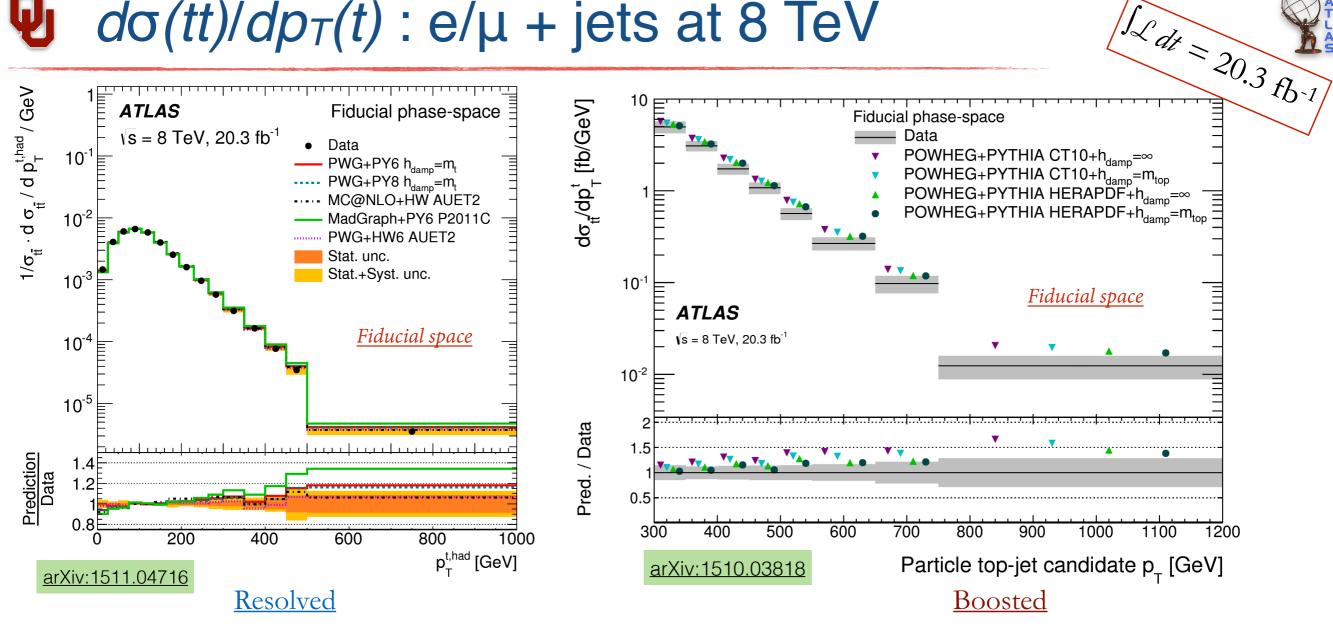
Q Inclusive $\sigma(tt)$: The big picture



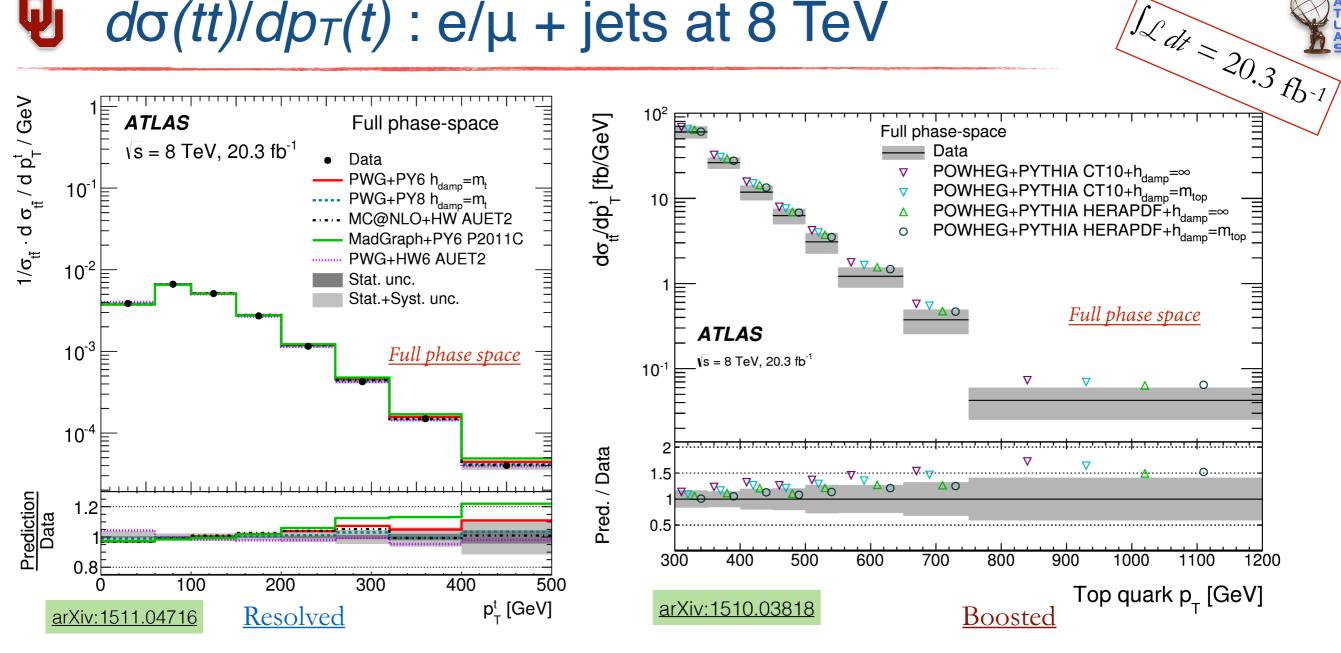
Remarkable agreement with theory!

Differential measurements


- Large statistics of top quark pair at the LHC allows for precise differential measurements:
 - additional constraints on m_t , α_s , PDF, pQCD, new physics
 - compare theory to data corrected for reconstruction, resolution, parton shower effects
- Reconstruct variable X from selected events. X is corrected for detector effects ("unfolding" technique) to parton- and particle-level
- Parton-level: easier comparison with theoretical prediction
 - look at simulated decay chain and select the top quark. Usually before it decays to b-quark and W-boson (after radiation)
- Particle-level(pseudo-top): less model dependance
 - directly measurable quantities. No extrapolation to full phase space

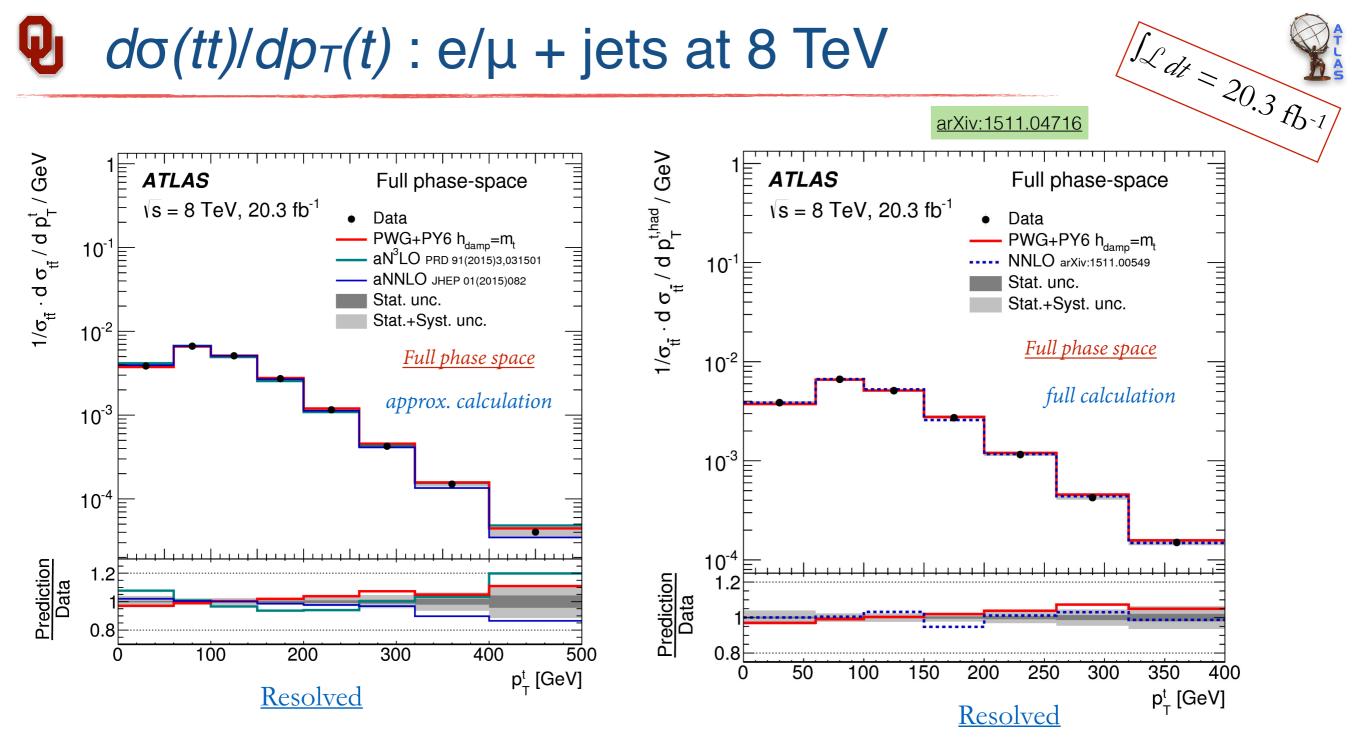


- Measure σ as a function of different observables: $p_T(t)$, y(tt), M_{tt} , N_{jets}
- Both in the
 - r<u>esolved</u> topology: top quark produced almost at rest- isolated leptons, not overlapping jet cones
 - <u>boosted</u> topology: form "large fat" jets+W bosons, leptons nonisolated
- Observables are sensitive to effects of ISR/FSR, PDF, non-resonant processes and higher order corrections

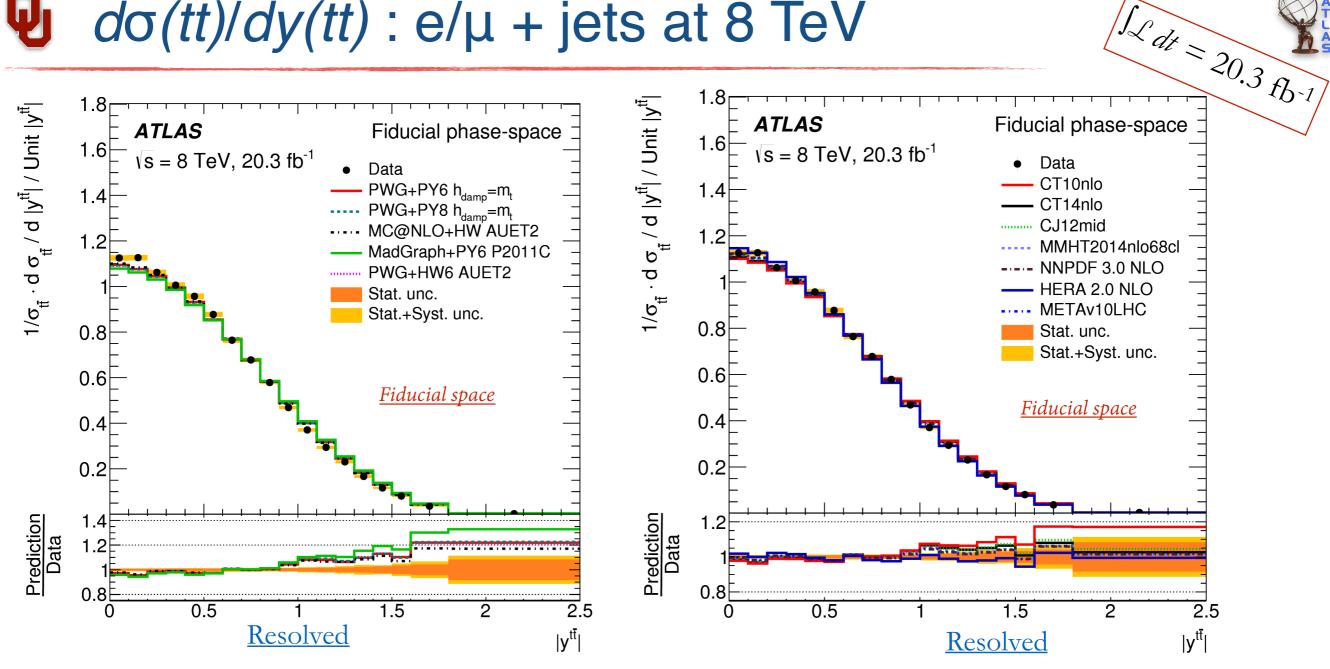

$d\sigma(tt)/dp_T(t)$: e/μ + jets at 8 TeV

- Unfolded to top-jet particle level, i.e. jets built of stable truth-level particles
- p_T spectrum harder in simulation than data esp. for $p_T > 400 \text{ GeV}$
- Same trend is observed in the boosted topology

<i>p</i> -value	$PWG+PY8$ $CT10$ $h_{damp} = m_t$	+HW CT10	$PWG+PY6$ $CT10$ $h_{damp} = m_t$	$PWG+HW6$ $CT10$ $h_{damp} = \infty$	MadGraph+PY6 MadGraph+PY6 P2011C	$PWG+PY6$ $HERAPDF$ $h_{damp} = m_t$	$PWG+PY6$ $HERAPDF$ $h_{damp} = \infty$
resolved	0.72	0.04	0.59	1.00	< 0.01	-	0.05
boosted	-	0.14	0.11	0.41	-	0.31	0.21

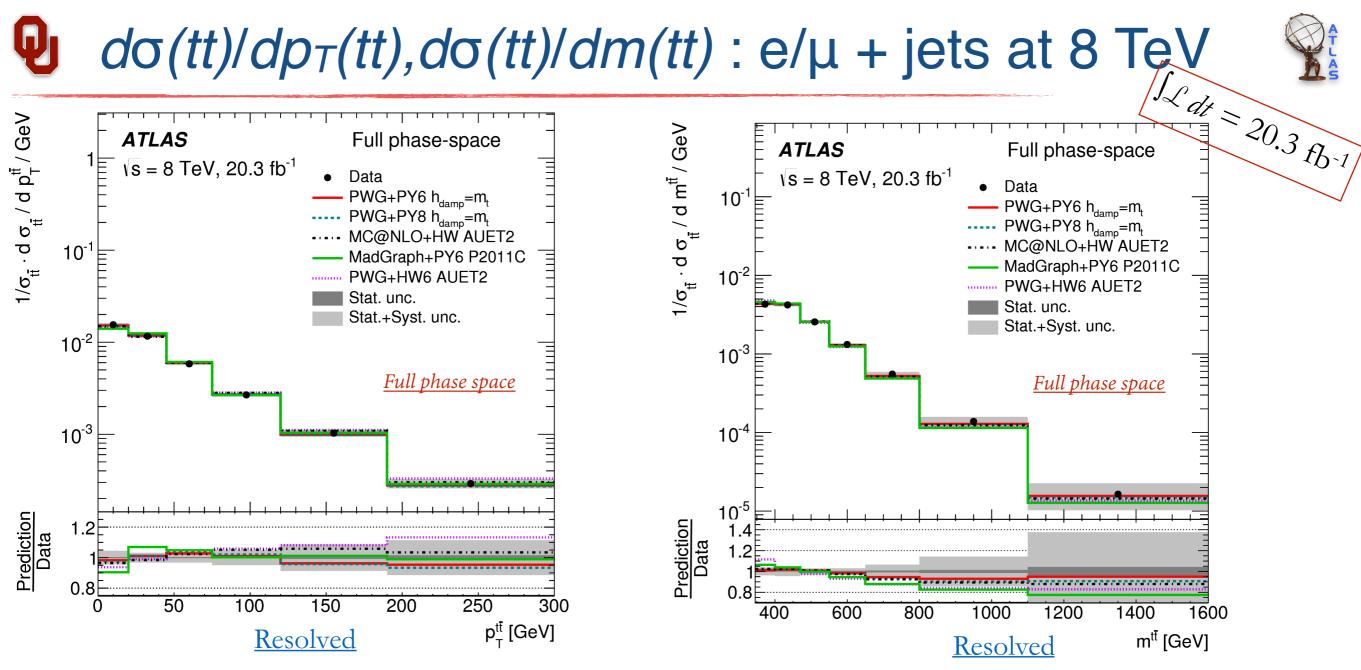

$d\sigma(tt)/dp_T(t)$: e/μ + jets at 8 TeV

- Unfolded to parton level and extrapolated to full phase space using Powheg+Pythia
- Better agreement in simulation and data at the parton level both in resolved and boosted topology
- Mostly due to the large uncertainty compared to particle level


<i>p</i> -value	$PWG+PY8$ $CT10$ $h_{damp} = m_t$	MC@NLO +HW CT10 AUET2	$PWG+PY6$ $CT10$ $b_{damp} = m_t$	$PWG+HW6$ $CT10$ $h_{damp} = \infty$	MadGraph+PY6 MadGraph+PY6 P2011C
resolved	1.0	0.65	0.56	0.80	0.03

Hasib Ahmed(OU)

- In resolved topology, theoretical predictions with higher order QCD calculations also used
 - ► aN³LO: apprx. next-to-next-to-next-to-leading order
 - aNNLO: apprx. next-to-next-to-leading order
 - NNLO: full next-to-next-to-leading order
- A full NNLO QCD calculation gives the best agreement with data


$d\sigma(tt)/dy(tt)$: e/ μ + jets at 8 TeV

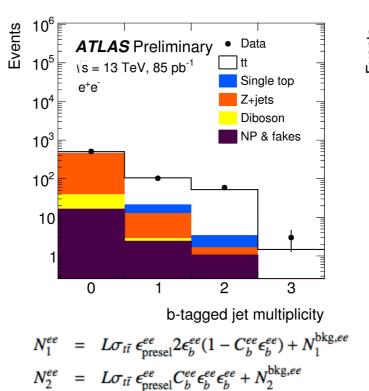
- Unfolded to parton level and extrapolated to full phase space using Powheg+Pythia6 with CT10 PDF
- Sensitive to (gluon) PDF, especially in the forward region
- *p*-value for all generators < 0.01
- Direct comparison among different PDF sets for Powheg+Pythia6

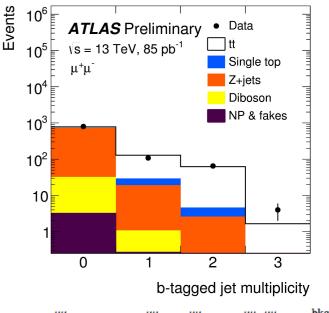
arXiv:1511.04716	<i>p</i> -value	CT14nlo	CJ12mid	MMHT 2014nlo68cl	NNPDF30nlo	CT10nlo	METAv10LHC	HERA20NLO
	resolved	< 0.01	< 0.01	0.10	0.40	< 0.01	0.27	0.22

Hasib Ahmed(OU)

- Unfolded to parton level and extrapolated to full phase space using Powheg+Pythia6 with CT10 PDF •
- Sensitive to new, large width, particles decaying to top quark pair •
- Important to tune simulation well

arXiv:1511.04716	<i>p</i> -value	$PWG+PY8$ $CT10$ $h_{damp} = m_t$	MC@NLO +HW CT10 AUET2	$PWG+PY6$ $CT10$ $h_{damp} = m_t$	$PWG+HW6$ $CT10$ $h_{damp} = \infty$	MadGraph+PY6 MadGraph+PY6 P2011C
	p _T (tt)	0.75	0.72	0.94	0.41	0.05
	m(tt)	0.73	0.71	0.93	< 0.01	0.04


- ATLAS performed inclusive top quark pair production cross section in single lepton, dilepton and all hadronic decay modes
- All measurements are in agreement with NNLO+NNLL calculations
- Final states with $e\mu$ events provide the most precise measurements
- Experimental accuracy has reached the theoretical calculations
- Further precision tests performed through differential cross section measurements
- Unfolding techniques to particle and parton level provides a variety of interface with theory.
- Softer p_T(t) spectrum is observed in data, full NNLO calculation describes data better than NLO, aNNLO and aN³LO calculations.

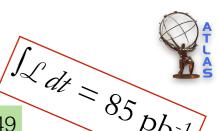

A wealth of measurements to follow with high statistics and never before achieved precision!

BACKUP

Inclusive $\sigma(tt)$: ee/µµ events at 13 TeV

- Oppositely charged ee or μ μ events:
 lepton p_T > 25 GeV, |η| < 2.5
- Z+jets background is suppressed :
 - ▶ 101 < M(ℓℓ) (GeV) < 81
 - missing $E_T > 30 \text{ GeV}$
- Dominant background Z+jets:
 - normalized using a high purity Z+jets
 control region 81 < M(ll) (GeV) < 101

ATLAS-CONF-2015-049


 $\int \mathcal{L} dt = 85 \text{ pb-1}$

 $N_1^{\mu\mu} = L\sigma_{t\bar{t}} \epsilon_{\text{presel}}^{\mu\mu} 2\epsilon_b^{\mu\mu} (1 - C_b^{\mu\mu} \epsilon_b^{\mu\mu}) + N_1^{\text{bkg},\mu\mu}$ $N_2^{\mu\mu} = L\sigma_{t\bar{t}} \epsilon_{\text{presel}}^{\mu\mu} C_b^{\mu\mu} \epsilon_b^{\mu\mu} \epsilon_b^{\mu\mu} + N_2^{\text{bkg},\mu\mu},$

Event Count	N ₁ (ee)	N ₂ (ee)	N ₁ (μμ)	N ₂ (μμ)	Estimation
Data	103	59	108	65	
$Z(\rightarrow \ell \ell)$ + jets	9.9±2.3	0.6 ± 0.7	18±6	2.5±2.0	sim.+data
$Z(\rightarrow \tau \tau \rightarrow \ell \ell) + jets$	0.14±0.1	< 0.01	0.11±0.1	0.02±0.1	sim.+data
Dibosons	0.5±0.4	0.02±0.1	0.8±0.6	0.07±0.1	simulation
Non prompt/Fakes	2.4±0.5	1.1±0.4	0.27±0.2	0.08±0.2	simulation
Single top	8.7±1.6	1.8±0.9	10.3±1.6	2.0±0.9	simulation
Total background	21.6±2.8	3.4±1.8	29.4±3.0	4.6±1.8	—
Signal purity	80%	93%	80%	96%	

 $\sigma(\text{tt}) = 749 \pm 57 \text{ (stat)} \pm 79 \text{ (syst)} \pm 74 \text{ (lumi) pb}$ 8% 11% 10% $\Delta\sigma/\sigma = 16\%$

Inclusive $\sigma(tt)$: e/µ+jets events at 13 TeV

- Exactly one e/μ events:
 - lepton $p_T > 25$ GeV, $|\eta| < 2.5$
- Suppress W+jets background:
 - ▶ at least 4 jets
 - ▶ at least 1 jet is b-tagged
- Suppress non-prompt/fake background:
 - missing $E_T > 40 \text{ GeV}$
 - W transverse mass, $m_T > 50 \text{ GeV}$
- Dominant background W+jets: normalized in data using W boson charge asymmetry measurement
- Cross section measured using counting number of events:

```
\sigma = (N_{data} - N_{background})/\epsilon L
```

		AILA	<u>3-00117-20</u>	<u>J13-049</u>	PD
	Event Count	e+jets	µ+jets	Estimation	
	Data	3439	3314]
	W+jets	340±100	230±60	data	
	Single top	192±34	180±30	simulation	
	Dibosons	10±5	10±5	simulation	
	Z+ jets	71±35	45±22	simulation	
	Fakes	200±70	130±60	data	
l:	Total background	820±130	600±100		
	Signal purity	80%	80%		
L .	W+jet	Jets / i no	10×10^{3} $ATLA$ $8 - \sqrt{s} = 13$ $1 + jets$ $4 - $ $2 - $	Dib W+ Z+j	ta ngle top boson Fjets gets & fakes

50

ATLAS-CONF-2015-049

 $\sigma(tt) = 817 \pm 13 \text{ (stat)} \pm 103 \text{ (syst)} \pm 88 \text{ (lumi) pb}$ 13% 11% 2% $\Delta\sigma/\sigma = 17\%$

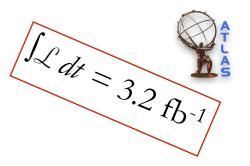
50

100

150

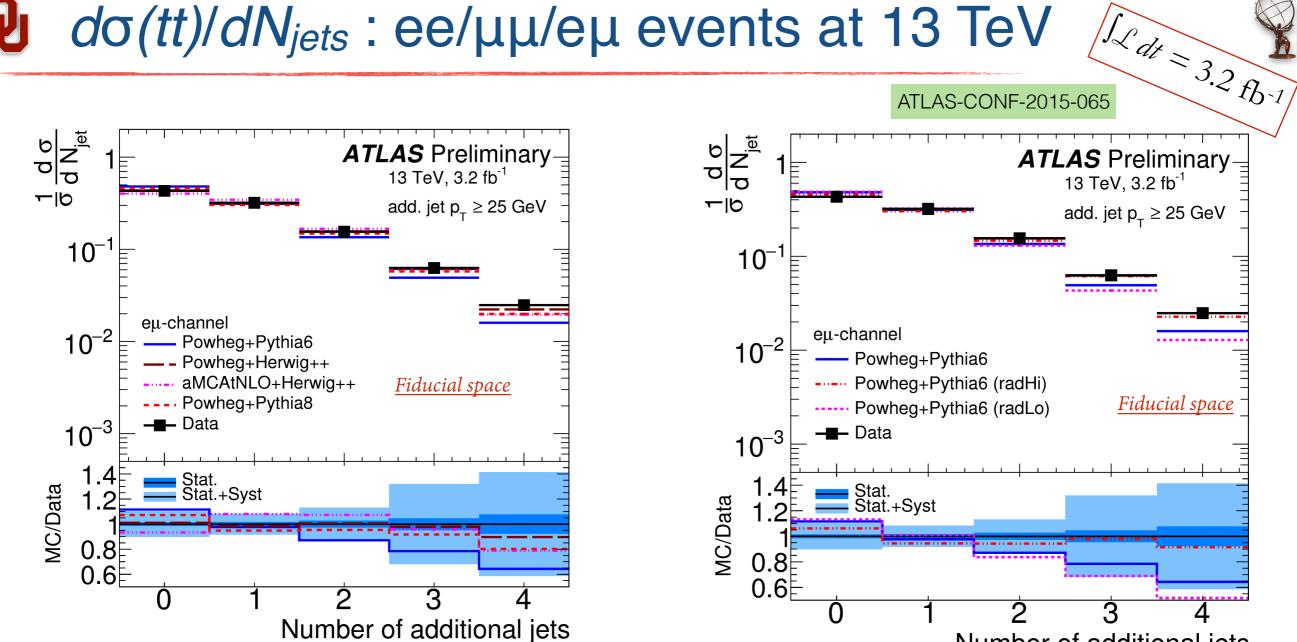
200

m^w_T [GeV]


200

150

Jet p₇ [GeV]


100

Θ $d\sigma$ (*tt*)/ dN_{jets} : ee/µµ/eµ events at 13 TeV

ATLAS-CONF-2015-065

- Production of additional jets is sensitive to higher order pQCD effects
- Expected to be independent of the lepton flavor from W decay
- The modeling of these jets contribute to significant source of uncertainty in precision measurement
- Dominant background in searches for new physics
- Dilepton events are considered:
 - oppositely charged $ee/\mu\mu/e\mu$ pairs
 - at least 2 b-tagged jets
 - ► Z mass veto
- Any other accompanying jets are considered to be additional
- Data is unfolded to particle level i.e. fiducial region using Powheg+Pythia6

Number of additional jets

Syst (%)	0-jet	1-jet	2-jets	3-jets	4-jets
Statistics	1.5	1.8	2.8	4.6	7.7
Signal modelling	6.3	7.3	5.1	22.0	32.8
Jets	6.7	3.9	11.3	22.2	21.5
Other	0.3	1.4	1.3	3.3	9.5
Total	9.3	8.6	12.7	31.8	41.1