Measurement of Transverse Single Spin Asymmetries in π^0 Production from $p^{\uparrow} + p$ and $p^{\uparrow} + A$ Collisions at STAR

Christopher Dilks for the STAR Collaboration DIS 2016 12 April 2016

Transverse Single Spin Asymmetry A_N

- STAR at RHIC and Forward Calorimetry
- Preliminary Results from forward $\pi^0 A_N$ in p+Au

Transverse Single Spin Asymmetry

cross-section for leftward scattering when proton beam polarization is up (down)

 $\frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$

Large $\pi^0 A_N^{N}$, independent of s^{1/2} and rising with $x_F = 2p_L s^{-1/2}$, observed since 1976

 $A_N =$

 $d\sigma^{\uparrow(\downarrow)}$

X_{F} and p_{T} dependence of A_{N}

 $s^{1/2}$ =200 GeV and 500 GeV show same rise of A_N vs. x_F as lower $s^{1/2}$ measurements Collins, Sivers, Twist-3 suggest A_N~1/p_T
 Flat P_T-dependence observed and raises the question as to what causes it

π^{0} Isolation-Dependence of A_{N}

Implications from Polarized pA Collisions

Correlations of A_N with other observables, e.g.:

- Possible probe of nuclear saturation scale
 - Color glass condensate predicts $p+A A_N$ decreases as A increases
- Nuclear modification factor R_{pA}

(production in pA / production in pp)

Fragmentation universality

 $-e.g., A_{N}$ dependence on event topology / exclusiveness

Collision centrality

What about p_{T} and x_{F} dependences of A_{N} ?

Do these characteristics persist in pA production, or are they "filtered" away by the nucleus?

Outline

Transverse Single Spin Asymmetry A_N

STAR at RHIC and Forward Calorimetry

Preliminary Results from forward $\pi^0 A_N$ in p+Au

Relativistic Heavy Ion Collider

Brookhaven National Laboratory Long Island, NY The second dependence of the second dependence

STAR Calorimetry

Forward Meson Spectrometer (FMS)

- Forward pseudorapdity: $2.5 < \eta < 4.2$
- 1,264 Lead-glass cells coupled to photomultiplier tubes
 - Large (5.8 x 5.8 cm) outer cells (red)
 - Small (3.8 x 3.8 cm) inner cells (green)
- Observes $\pi^0 \rightarrow y+y$ as 2 cluster events (M=135 MeV)
 - Can also observe $\eta \rightarrow \gamma + \gamma$
 - Forward mid-to-high-x partons collide with a disk of low-x partons

Outline

Transverse Single Spin Asymmetry A_N

- STAR at RHIC and Forward Calorimetry
- Preliminary Results from forward $\pi^0 A_N$ in p+Au

Analysis of 2015 p+p and p+Au Dataset

In 2015, RHIC collided polarized p+Au and p+Al (along with transversely polarized p+p) at s^{1/2}=200 GeV – A(Au)=197 – A(Al)=27

This analysis is of the p+Au data set, compared p+p

Event Selection for 2015 Analysis (inclusive: π^0 + X)

- 1) Collect photons within 35 mR cones.
- 2) π^0 mass [M-.135] < 0.12 GeV/c²
- 3) Organize into P_{T} and E Bins
- 4) For photon pair, $|E_1 E_2|/(E_1 + E_2) < 0.7$
- 5) Beam Beam Counter (BBC) cuts

(gold or away side proton breakup cut)

6) Require P_T above trigger threshold.

Extracting asymmetries in p+Au – Example 🗡

This Example with π^0 within (0.55<X_F<0.65) and

The p+Au Asymmetry depends on BBC charged particle distribution from gold breakup in the East BBC (and to lesser extent similar away side proton breakup in pp collisions) For now, that will be

For now, that will be included as a **systematic uncertainty** in the measured A_N and is the dominant systematic uncertainty.

This dependence will be fully characterized in the future.

> Steve Heppelmann MPI 2015

$s^{1/2}=200 \text{ GeV } \pi^0 A_N$ for pp vs. pAu

12 April 2016

C. Dilks -- TSSA in pp/pA at STAR Steve

Steve Heppelmann 15 MPI 2015

Topology Dependence

<u>Run 15 2015 pp √s=200 GeV Data</u>

Example showing suppression of $\pi^0 A_N$ for jet-like events. This shows **2 photon cluster FMS events**, with a π^0 (0.25<X_F<0.35)

Second E&M photon cluster (E>3 GeV),

outside the primary 35 mR π^0 cone.

2-Cluster Distributions in pp vs. pA

First cluster contains π^0

 $0.25 < x_F(\pi^0) < 0.35$ $3.55 < p_T(\pi^0) < 4.05 \text{ GeV/c}$ E>3 GeV for 2^{nd} cluster in momentum direction relative to π^0 direction

17

Topology-dependent A_N in pp vs. pA

C. Dilks -- TSSA in pp/pA at STAR

MPI 2015

Summary

Large A_N has been observed since 1976

 \odot Rising with ${\rm x}_{\rm F}$

- $\odot A_{_N}$ tends to increase w.r.t $p_{_T}$
- Dependent on event topology for π^0 s
 - Isolated π^0 s have higher asymmetries
 - Asymmetries suppressed in multi-photon EM jets
- 2015 first data recorded for polarized p+A collisions
 How does A_N in p+A production compare to A_N in p+p?
 Similar dependence on topology, though A_N for non-isolated π^os in p+A seems to be slightly smaller than that in p+p
 Dependence on centrality to be characterized
 Can also look at nuclear modification factors

Roman Pots were installed in 2015
 Possible to tag outgoing proton(s) as a signature for diffractive events
 Do the asymmetries depend on diffraction?

backup

EM-jet A_N

■ s^{1/2}=500 GeV

- EM-jet A_N decreases as number of photons increase
- 1-photon events have pion contamination, so A_N is similar to that of
 2-photon events, which are mostly pions
- Pion A_N is also reduced when there are correlated central EM-jets (see backup)
- Sivers-type asymmetry in the jets is too small to explain high pion A_N

Collins Asymmetry (" A_N within a Jet")

A_N for pp vs. pA Predictions

 $A_{_{N}}^{_{}\ pA}$ / $A_{_{N}}^{^{}\ pp}$ vs. $p_{_{T}}$ for FMS $\pi^{\scriptscriptstyle 0}s$

- Color glass condensate model predicts pA A_N decreases as A increases
- pQCD & factorization predicts same A_N for any size of nuclear target

 A_{N} in pA vs. in pp as a possible probe to nuclear saturation scale Q_{s}^{A}

In 2015, RHIC collided p^+Au and $p^+Al - A(Au)=197 - A(Al)=27$

Roman Pots

