Update on KP Nuclear Parton Distributions

S. Kulagin

INR Moscow, Russia <u>R. Petti</u>

University of South Carolina, Columbia SC, USA

DIS 2016 April 13th, 2016, DESY, Hamburg, Germany

- I The KP Nuclear Parton Distributions
- Different mechanisms of nuclear effects in different kinematical regions;
- ♦ Off-shell correction ⇔ in-medium modification of bound nucleons;
- Constraints/connections from PDF Sum Rules.
- **II** Application to *lA* DIS and Drell-Yan Production in pA
- ✦ Comparisons with JLab E03-103 and HERMES data;
- ✦ Comparisons with E772 Drell-Yan data.
- **III** Application to W^{\pm} , Z Production in pPb at the LHC
 - \bullet W^{\pm}, Z production in heavy ion collisions;
 - Comparison with CMS data on W^{\pm}, Z at $\sqrt{s_{\rm NN}} = 5.02$ TeV.

THE KP NUCLEAR PDFs

- QCD factorization suggests that Leading Twist cross-sections are driven by PDFs regardless of the hadronic target, leading naturally to the definition of nuclear PDFs. Nuclear PDFs are high Q characteristic of the target and process-independent.
- The KP nuclear PDFs are predicted from our semi-microscopic model (NOT a fit unlike conventional approaches):
 - Offer insights on the underlying nuclear physics mechanisms;
 - Compact description in terms of few simple parameters describing properties of the NUCLEON (i.e. independent from the specific nucleus considered);
 - Nuclear properties described independently through the nuclear spectral function;
 - Clear definition of the Leading Twist contributions;
 - Available for a wide range of nuclei from deuteron (A = 2) to lead (A = 207).
- The KP nuclear PDFs have been validated with data from a wide range of processes including lepton-nucleus DIS, Drell-Yan production in pA collisions, Z, W[±] production in heavy ion collisions at colliders.

NUCLEAR PARTON DISTRIBUTIONS

GLOBAL APPROACH aiming to obtain a quantitative model covering the complete range of x and Q^2 (S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204):

- Scale of nuclear processes (target frame) $L_I = (Mx)^{-1}$ Distance between nucleons $d = (3/4\pi\rho)^{1/3} \sim 1.2Fm$
- $L_I < d$ For x > 0.2 nuclear DIS \sim incoherent sum of contributions from bound nucleons
- $L_I \gg d$ For $x \ll 0.2$ coherent effects of interactions with few nucleons are important

DIFFERENT EFFECTS

on parton distributions (PDF) are taken into account:

$$q_{a/A} = q_a^{p/A} + q_a^{n/A} + \delta q_a^{\text{MEC}} + \delta q_a^{\text{coh}} \qquad a = u, d, s....$$

- $q_a^{p(n)/A}$ PDF in bound p(n) with Fermi Motion, Binding (FMB) and Off-Shell effect (OS)
- $\delta q_a^{\rm MEC}$ nuclear Meson Exchange Current (MEC) correction
- δq_a^{coh} contribution from coherent nuclear interactions: Nuclear Shadowing (NS)

INCOHERENT NUCLEAR SCATTERING

FERMI MOTION AND BINDING in nuclear parton distributions can be calculated from the convolution of nuclear spectral function and (bound) nucleon PDFs: $q_{a/A}(x,Q^2) = q_a^{p/A} + q_a^{n/A}$ $xq_a^{p/A} = \int \mathrm{d}\varepsilon \,\mathrm{d}^3\mathbf{p}\,\mathcal{P}(\varepsilon,\mathbf{p})\left(1+\frac{p_z}{M}\right)x'q^N(x',Q^2,p^2)$ where $x' = Q^2/(2p \cdot q)$ and $p = (M + \varepsilon, \mathbf{p})$ and we dropped $1/Q^2$ terms for illustration purpose. there appears dependence on the ✤ Since bound nucleons are OFF-MASS-SHELL nucleon virtuality $p^2 = (M + \varepsilon)^2 - \mathbf{p}^2$ and expanding PDFs in the small $(p^2 - M^2)/M^2$: $q_a(x, Q^2, p^2) \approx q_a^N(x, Q^2) \left(1 + \delta f(x)(p^2 - M^2)/M^2\right).$ where we introduced a structure function of the NUCLEON: $\delta f(x)$

+ Hadronic/nuclear input:

- Proton/neutron PDFs computed in NNLO pQCD + TMC + HT from fits to DIS data
- Two-component nuclear spectral function: mean-field + correlated part

Roberto Petti

Off-shell function measures the in-medium modification of bound nucleon Any isospin (i.e. $\delta f_p \neq \delta f_n$) or flavor dependence (δf_a) in the off-shell function?

NUCLEAR MESON EXCHANGE CURRENTS

+ Leptons can scatter off mesons which mediate interactions among bound nucleons:

$$\delta q_a^{\text{MEC}}(x,Q^2) = \int_x \mathrm{d}y \, f_{\pi/A}(y) q_a^{\pi}(x/y,Q^2)$$

• Contribution from nuclear pions (mesons) to balance nuclear light cone momentum $\langle y \rangle_{\pi} + \langle y \rangle_{N} = 1$. The pion distribution function is localized in a region of $y \leq p_{F}/M \sim 0.3$ so that the pion contribution is at x < 0.3. The correction is driven by the average number of "pions" $n_{\pi} = \int dy f_{\pi}(y)$ and $n_{\pi}/A \sim 0.1$ for heavy nuclei.

+ Hadronic/nuclear input:

- Pion Parton Density Functions from fits to Drell-Yan data
- $f_{\pi/A}(y)$ calculated using constraints of light-cone momentum conservation and equations of motion for pion-nucleon system

COHERENT NUCLEAR EFFECTS

(ANTI)SHADOWING correction comes from multiple interactions of the hadronic component of virtual photon during the propagation through matter. This is described following the Glauber-Gribov approach:

$$\mathcal{A}(a) = ia^2 \int_{z_1 < z_2} d^2 \mathbf{b} dz_1 dz_2 \,\rho_A(\mathbf{b}, z_1) \rho_A(\mathbf{b}, z_2) e^{i \int_{z_1}^{z_2} dz' a \,\rho_A(\mathbf{b}, z')} e^{ik_L(z_1 - z_2)}$$

 $\boxed{a = \sigma(i + \alpha)/2}$ is the (effective) scattering amplitude ($\alpha = \operatorname{Re} a/\operatorname{Im} a$) in forward direction, $k_L = Mx(1 + m_v^2/Q^2)$ is longitudinal momentum transfer in the process $v^* \to v$ (accounts for finite life time of virtual hadronic configuration).

Hadronic/nuclear input:

- Nuclear number densities $\rho_A(r)$ from parameterizations based on elastic electron scattering data
- Low Q^2 limit of scattering amplitude a given by Vector Meson Dominance (VMD) model

PREDICTIONS FOR CHARGED LEPTON DIS DATA

CONSTRAINTS FROM PDF SUM RULES

- Nuclear meson correction constrained by light-cone momentum balance and equations of motion. (S. Kulagin, NPA 500 (1989) 653; S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204)
- At high Q² (PDF regime) coherent nuclear corrections controlled by the Leading Twist (LT) amplitudes, which can be constrained by normalization sum rules: $\delta N_{\text{val}}^{\text{OS}} + \delta N_{\text{val}}^{\text{coh}} = 0 \implies a_0$ $\delta N_1^{\text{OS}} + \delta N_1^{\text{coh}} = 0 \implies a_1$ where $N_{\text{val}}^A = A^{-1} \int_0^A dx q_{0/A}^- = 3$ and $N_1^A = A^{-1} \int_0^A dx q_{1/A}^- = (Z N)/A$ 10

Solve numerically equations above in terms of the δf function (input) and obtain the effective LT cross-section in the (I = 0, C = 1) state, as well as Re/Im of amplitudes

 \implies In our approach nuclear corrections to PDFs essentially defined by $\mathcal{P}(\varepsilon, \mathbf{p})$ AND $\delta f(x)$

NUCLEAR MODIFICATION OF PDFs

Ratio between our nPDFs and the corresponding ones calculated from free proton and neutron PDFs as $(Zq_p + Nq_n)$ at $Q^2 = 25$ GeV² in ²⁰⁷Pb.

PREDICTIONS FOR DRELL-YAN PRODUCTION IN pA

♦ Need to consider the energy loss by the projectile parton in the target nucleus:

 $x_B \to x_B + E'L/E_B$ E' = -dE/dz

where E_B energy of proton, L distance traveled in nuclear environment

◆ In E772/E866 s=1504 GeV² and at $x_F > 0.2$ dominated by $q^B \bar{q}^T$ annihilation:

 $\frac{\sigma_A^{\rm DY}}{\sigma_B^{\rm DY}} \approx \frac{\bar{q}_A(x_T)}{\bar{q}_B(x_T)}$

 \implies Nuclear data from Drell-Yan production in hadron collisions indicate no major enhancement to sea quarks for $x_T > 0.1$ as given by nuclear π excess

H E772 data - E'=0 - E'=0.7 - E'=1.5 E772 data E'=0 ⁴⁰Ca 1.15 ¹²C E'=0.7 E'=1.5 1.1 α(PA)/α(P²H) α(PA)/α(D²H) 0.95 0.9 Fermilab E772 pA 0.85 E772 data E'=0 E'=0.7 E'=1.5 Ė772 data - 10-E'=0 ¹⁸⁴W 1.15 ⁵⁶Fe E'=0.7 E'=1.5 1.1 d(H2d)/α(H2d) α(D4)/α(D2d) 1 0.95 0.9 0.85 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.05 0.25 х_Т х_т

S. Kulagin and R.P., PRC 90 (2014) 045204

 \implies Partial cancellation between pion and shadowing effects \implies No evidence of sea-valence differences in $\delta f(x)$ from Drell-Yan data

PREDICTIONS FOR W^{\pm}, Z PRODUCTION IN pPb AT THE LHC

 Collaboration with Ben-Wei Zhang (Central China Normal University, Wuhan, China) and Peng Ru (Dalian University of Technology, China) [see e.g. JPG 42 (2015) 085104]

 \bullet W^{\pm}, Z production in pPb collisions at the LHC good tool to study nuclear PDFs:

- Leptonic decays of electroweak bosons can directly probe cold nuclear matter (CNM) effects since leptons do not interact strongly with the medium produced in these collisions;
- Access to a kinematic region not reachable by fixed target experiments;
- Selecting different rapidity values can probe the Pb fragmentation region and nuclear modifications of PDFs in Pb at $x \simeq M_{W,Z}/\sqrt{s_{\rm NN}} \times \exp(-\eta_{\rm lab} + 0.465)$.
- ◆ Analyze recent CMS measurement of W^{\pm} , Z production in pPb at nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV:
 - W^{\pm}, Z Differential cross-sections as a function of rapidity;
 - Forward-Backward asymmetries vs. rapidity: $N_l(+\eta_{lab})/N_l(-\eta_{lab})$ for W, $N(+y^Z)/N(-y^Z)$ for Z;
 - W lepton charge asymmetry $(N_l^+ N_l^-)/(N_l^+ + N_l^-)$.
- ← The cross-sections have been calculated at the NLO QCD approximation using the DYNNLO program [PRL 103 (2009) 082001] at $\mu_r = \mu_f = m_{W,Z}$

PREDICTIONS FOR W^{\pm} DIFFERENTIAL CROSS-SECTIONS

PREDICTIONS FOR W^{\pm} FORWARD-BACKWARD ASYMMETRIES

PREDICTIONS FOR W CHARGE ASYMMETRY

PREDICTIONS FOR Z PRODUCTION

SUMMARY

- The KP nuclear PDFs are predicted on the basis of a detailed semi-microscopic nuclear model, accounting for a number of nuclear effects like shadowing, energy-momentum distribution of bound nucleons (spectral function), nuclear meson-exchange currents and off-shell corrections
- A quantitative study of existing data from charged lepton-nucleus DIS has been performed in a wide kinematic region of x and Q^2

 \implies Good agreement of predictions with data from JLab E03-103 and HERMES

- Predictions in good agreement with Drell-Yan data indicating a partial cancellation between different nuclear effects
- ◆ Predictions in good agreement with W[±] and Z boson production in pPb collisions at the LHC with much higher energies (√s_{NN} = 5.02 TeV) than fixed target experiments ⇒ Evidence of nuclear modification of cross-sections

Backup slides

Roberto Petti

NUCLEAR SPECTRAL FUNCTION

- The description of the nuclear properties is embedded into the nuclear spectral function
- Nucleons occupy energy levels according to Fermi statistics and are distributed over momentum (Fermi motion) and energy states. In the MEAN FIELD model:

$$\mathcal{P}_{\mathrm{MF}}(\varepsilon, \mathbf{p}) = \sum_{\lambda < \lambda_{\mathbf{F}}} \mathbf{n}_{\lambda} \mid \phi_{\lambda}(\mathbf{p}) \mid^{2} \delta(\varepsilon - \varepsilon_{\lambda})$$

where sum over occupied levels with n_{λ} occupation number. Applicable for small nucleon separation energy and momenta, $|\varepsilon| < 50$ MeV, p < 300 MeV/c

CORRELATION EFFECTSin nuclear ground state drive the high-energy andhigh-momentum component of the nuclear spectrum, when $|\varepsilon|$ increases

Roberto Petti

OFF-SHELL FUNCTION FROM HEAVY TARGETS $(A \ge 4)$

• $\delta f(x)$ extracted phenomenologically from nuclear DIS ratios $\mathcal{R}_2(A, B) = F_2^A/F_2^B$:

- Electron and muon scattering from BCDMS, EMC, E139, E140, E665 and NMC
- Wide range of targets ⁴He,⁷Li,⁹Be,¹²C,²⁷AI,⁴⁰Ca,⁵⁶Fe,⁶⁴Cu,¹⁰⁸Ag,¹¹⁹Sn,¹⁹⁷Au,²⁰⁷Pb
- Systematic uncertainties including modeling, functional form and spectral/wave function variations

\implies Partial cancellation of systematics from spectral function in RATIOS $\mathcal{R}_2(A, B)$

FLAVOR AND C-PARITY DEPENDENCE OF nPDFs

◆ Impulse Approximation (IA) from the convolution of isoscalar $q_0=u+d$ and isovector $q_1=u-d$ nucleon PDF with the corresponding spectral functions:

• Off-shell effect controlled by the nucleon $\delta f(x)$ function

- \implies We assume universal δf for all partons for simplicity
- ⇒ Verify isospin and/or flavor dependance with data from flavor-sensitive processes.

• Nuclear shadowing depends on C-parity $q^{\pm} = q \pm \bar{q}$:

 $\delta \mathcal{R}^+ = \operatorname{Im} \mathcal{A}(a^+) / A \operatorname{Im} a^+ \qquad \delta \mathcal{R}^- = \operatorname{Im} a^- \mathcal{A}_1(a^+) / A \operatorname{Im} a^-$

where $A_1(a) = \partial A(a) \partial a$ and $a^{\pm} = a \pm \overline{a}$ are the amplitudes of definite C parity.

- $|\delta \mathcal{R}^{-}| > |\delta \mathcal{R}^{+}|$ because of the nonlinear dependence $\mathcal{A}(a)$.
- $\delta \mathcal{R}^-$ is independent of the cross section $\sigma^- = 2 \text{Im} a^-$. However it nonlinearly depends on a^+ .

• For isoscalar targets nuclear pion (meson) correction to valence distributions cancels out (isospin symmetry) $\delta_{\pi}q_{0/A}^{-} = 0$

Roberto Petti

PREDICTIONS FOR (ANTI)NEUTRINO DIS DATA

- Model of nuclear corrections for (anti)neutrino cross-sections based on results from e/μ DIS off nuclear targets and fully independent from (anti)neutrino data (S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 82 (2010) 054614).
- Comparison with NuTeV (Fe) and CHORUS (Pb) cross-section data (band $\pm 2.5\%$):
 - Systematic excess observed for x>0.5 in both ν and $\bar{\nu}$ NuTeV data on Fe
 - CHORUS data on Pb target consistent with predictions at large x;
 - Consistent excess observed at x < 0.05 in both CHORUS and NuTeV neutrino data

S. Kulagin and R.P., PRC 90 (2014) 045204