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OUTLINE

| The KP Nuclear Parton Distributions

4 Different mechanisms of nuclear effects in different kinematical regions;

4 Off-shell correction < in-medium modification of bound nucleons;
4 Constraints/connections from PDF Sum Rules.

Il Application to A DIS and Drell-Yan Production in pA

4 Comparisons with JLab E03-103 and HERMES data;
4 Comparisons with E772 Drell-Yan data.

11 Application to W=, Z Production in pPb at the LHC

4 W=, Z production in heavy ion collisions;
4 Comparison with CMS data on W*,Z at \/syy = 5.02 TeV.
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THE KP NUCLEAR PDFs

4 QCD factorization suggests that Leading Twist cross-sections are driven by PDFs
regardless of the hadronic target, leading naturally to the definition of nuclear PDFs.
Nuclear PDFs are high () characteristic of the target and process-independent.

4 The KP nuclear PDFs are predicted from our semi-microscopic model
(NOT a fit unlike conventional approaches):

e Offer insights on the underlying nuclear physics mechanisms;

e Compact description in terms of few simple parameters describing properties of the NUCLEON
(i.e. independent from the specific nucleus considered);

e Nuclear properties described independently through the nuclear spectral function;
o Clear definition of the Leading Twist contributions;
e Available for a wide range of nuclei from deuteron (A = 2) to lead (A = 207).

4 The KP nuclear PDFs have been validated with data from a wide range of processes
including lepton-nucleus DIS, Drell-Yan production in pA collisions, Z, W= production
in heavy ion collisions at colliders.
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NUCLEAR PARTON DISTRIBUTIONS

4+ | GLOBAL APPROACH |aiming to obtain a quantitative model covering the com-

plete range of x and Q2 (S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204):
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4 | DIFFERENT EFFECTS | on parton distributions (PDF) are taken into account:

Qa/A = @ + qZ/A + 5 4 §geon a=u,d,S§.....

a

e 2™/ PDF in bound p(n) with Fermi Motion, Binding (FMB) and Off-Shell effect (OS)
o 6¢MEC nuclear Meson Exchange Current (MEC) correction

a
e 61 contribution from coherent nuclear interactions: Nuclear Shadowing (NS)

a
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INCOHERENT NUCLEAR SCATTERING

+ FERMI MOTION AND BINDING | in nuclear parton distributions can be calcu-

lated from the convolution of nuclear spectral function and (bound) nucleon PDFs:

n b
Guja(z, Q) = ¢/ 4 /4 ]

vt = /de d’pP(e, p) (1 + pﬁ) v'q" (2, Q% p?) P

b *3
where ¥’ = Q*/(2p-q) and p = (M +¢,p) and we CA—.I)
dropped 1/Q? terms for illustration purpose . A

4 Since bound nucleons are| OFF-MASS-SHELL | there appears dependence on the
nucleon virtuality p* = (M +¢)? —p? and expanding PDFs in the small (p* — M?)/M?:

da(, Q%) ~ ¢ (2, Q%) (1 + 6f () (p* — M*)/M?).

where we introduced a structure function of the NUCLEON:| § f(x)

4 Hadronic/nuclear input:

e Proton/neutron PDFs computed in NNLO pQCD + TMC + HT from fits to DIS data
e Two-component nuclear spectral function: mean-field + correlated part

Roberto Petti usc



OFF-MASS-SHELL Fy(z, Q% p*) = Fy(z,Q?) (1 +0f(x)(p* — MQ)/M2)

DESCRIPTION
OF NUCLEON

STRUCTURE FUNCTIONS

Fi(z,Q%), Fy(z,Q?), 2 F3(x,Q?%), .....
0f(x)

Distribution of partons in a nucleon

DESCRIPTION
OF NUCLEUS
(AR

SPECTRAL FUNCTION

P(e,p)

Distribution of bound nucleons

Off-shell function measures the in-medium modification of bound nucleon

Any isospin (i.e. f, # df,) or flavor dependence (6 f,) in the off-shell function?
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NUCLEAR MESON EXCHANGE CURRENTS

4 Leptons can scatter off mesons which mediate interactions among bound nucleons:

-~
302 w.Q%) = [ dy Fralw)al (/9. Q) v
x ~

NP .

4 Contribution from nuclear pions (mesons) to balance nuclear light cone momentum
(y)=+{y)n = 1. The pion distribution function is localized in a region of y < pgp /M ~
0.3 so that the pion contribution is at x < 0.3. The correction is driven by the average
number of “pions” n, = [dy fr(y) and n,/A ~ 0.1 for heavy nuclei.

4 Hadronic/nuclear input:

e Pion Parton Density Functions from fits to Drell-Yan data

o fr/a(y) calculated using constraints of light-cone momentum conservation and equations of
motion for pion-nucleon system

Roberto Petti
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COHERENT NUCLEAR EFFECTS

4+ | (ANTI)SHADOWING correction comes from multiple interactions of the

hadronic component of virtual photon during the propagation through matter. This is
described following the Glauber-Gribov approach:

M”"»C{ﬁliﬁ‘l"

5qcoh coh
AqN ~ AO‘ Im.A /AIHICL
A(a) = ia? 21< 20 d*b dzydzy pa(b, z1)pa(b, Z2) f dz’apa(b,z )eikL(zl—zQ)

a=o(i+ «)/2 |is the (effective) scattering amplitude (o« = Rea/Ima) in forward

direction, k;, = Mx(1 + m?/Q?) is longitudinal momentum transfer in the process
v* — v (accounts for finite life time of virtual hadronic configuration).

4 Hadronic/nuclear input:

e Nuclear number densities p o(r) from parameterizations based on elastic electron scattering data
o Low Q? limit of scattering amplitude a given by Vector Meson Dominance (VMD) model

Roberto Petti
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PREDICTIONS FOR CHARGED LEPTON DIS DATA
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CONSTRAINTS FROM PDF SUM RULES

4 Nuclear meson correction constrained by light-cone momentum balance and equations
of motion. (5. Kulagin, NPA 500 (1989) 653; S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90
(2014) 045204)

+ At high Q> (PDF regime) coherent nu- Choctve oo secion s
clear corrections controlled by the Leading =
Twist (LT) amplitudes, which can be con-
strained by normalization sum rules:
0S8 h K
SNOS LSNP =0 — g Ny,

val val

10 |

o (mb)

e,
SNPS + 0N =0 — e,
where NA, = A~ 4 dxqy,, = 3 and o
A _ pA-1 A - _ i . .
N1 = A fO dqu/A = (Z N)/A 1 ] 10 @ (GoV?) 100

Solve numerically equations above in terms of the § f function (input) and obtain the
effective LT cross-section in the (I = 0,C = 1) state, as well as Re/Im of amplitudes

= In our approach nuclear corrections to PDFs essentially defined by P(e,p) AND § f(z)
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NUCLEAR MODIFICATION OF PDFs

dx/(Z q
o
O
(8]
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Ratio between our nPDFs and the corresponding ones calculated
from free proton and neutron PDFs as (Zq, + Nq,) at Q* = 25 GeV* in 2°"Pb.
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PREDICTIONS FOR DRELL-YAN PRODUCTION IN pA

4 Selecting small Q*/s and large xp we

probe sea quarks in the target nucleus P 75 e
4
d*s dra? 2 [ B T _B T i
deme - 9@2 Kza:ea [qa (xB)qa (l’T) + 44 ('rB)qa (ZET)} 4 o H_
meB:Q2/8; xB_xTzqu/\/g:xF \ Undetectel

4 Need to consider the energy loss by the projectile parton in the target nucleus:
rg —~a2p+ FL/Eg FE =—dE/dz

where Eg energy of proton, L distance traveled in nuclear environment

4 In E772/E866 s=1504 GeV? and at xp > 0.2 dominated by ¢”¢" annihilation:

ox' _ qa(er)

oY " qp(wr)

= Nuclear data from Drell-Yan production in hadron collisions indicate
no major enhancement to sea quarks for x7 > 0.1 as given by nuclear m excess
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S. Kulagin and R.P., PRC 90 (2014) 045204

. ||E772 data I I | |
______ E'=0
1.15 | | == B2 : |
——— E'=15 Ca
11 1 |
T 1.05 - 1 |
NQ.
L e T 1 |
&\ ? ______________
k=7
© 0.95 1 |
09 1 |
Fermilab E772 pA
0.85 R 1 |
1.15 | |
11 |
=1.05 |- |

0.95 - -
09 4 .
0.85 - T -
| | | | | | | | | |
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
X1 X1

= Partial cancellation between pion and shadowing effects
— No evidence of sea-valence differences in § f(x) from Drell-Yan data
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PREDICTIONS FOR W=, Z PRODUCTION IN pPb AT THE LHC

4 Collaboration with Ben-Wei Zhang (Central China Normal University, Wuhan, China)
and Peng Ru (Dalian University of Technology, China) [see e.g. JPG 42 (2015) 085104]

4 W=, Z production in pPb collisions at the LHC good tool to study nuclear PDFs:

e Leptonic decays of electroweak bosons can directly probe cold nuclear matter (CNM) effects since
leptons do not interact strongly with the medium produced in these collisions;

e Access to a kinematic region not reachable by fixed target experiments;

e Selecting different rapidity values can probe the Pb fragmentation region and nuclear modifications
of PDFs in Pb at x ~ My z//SNn X exp(—niap + 0.465).

4 Analyze recent CMS measurement of W=, Z production in pPb at nucleon-nucleon
center-of-mass energy ./sxn = 5.02 TeV:

e W=, Z Differential cross-sections as a function of rapidity;

o Forward-Backward asymmetries vs. rapidity: Ni(+map)/Ni(=mab) for W, N(+y?)/N(—y”) for Z;

o W lepton charge asymmetry (N, — N; ) /(N;" + N;).

4 The cross-sections have been calculated at the NLO QCD approximation using the
DYNNLO program [PRL 103 (2009) 082001] at i, = jiy = mw,z
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PREDICTIONS FOR W= DIFFERENTIAL CROSS-SECTIONS

—
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PREDICTIONS FOR W* FORWARD-BACKWARD ASYMMETRIES
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PREDICTIONS FOR W CHARGE ASYMMETRY
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PREDICTIONS FOR Z PRODUCTION
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SUMMARY

4 The KP nuclear PDFs are predicted on the basis of a detailed semi-microscopic
nuclear model, accounting for a number of nuclear effects like shadowing,
energy-momentum distribution of bound nucleons (spectral function), nuclear
meson-exchange currents and off-shell corrections

4 A quantitative study of existing data from charged lepton-nucleus DIS has been
performed in a wide kinematic region of x and ()*

= Good agreement of predictions with data from JLab E03-103 and HERMES

4 Predictions in good agreement with Drell-Yan data indicating a partial cancellation
between different nuclear effects

4 Predictions in good agreement with W= and Z boson production in pPb collisions at
the LHC with much higher energies (\/snn = 5.02 TeV) than fixed target experiments

— FEvidence of nuclear modification of cross-sections
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NUCLEAR SPECTRAL FUNCTION

4 T he description of the nuclear properties is embedded into the nuclear spectral function

4 Nucleons occupy energy levels according to Fermi statistics and are distributed over

momentum (Fermi motion) and energy states. In the| MEAN FIELD | model:

Pur(e,p) = Z ny | oA(p) ‘2 0(e —€n)

A<AR
where sum over occupied levels with n, occupation number. Applicable for
small nucleon separation energy and momenta, | € |< 50 MeV, p < 300 MeV/c

4 | CORRELATION EFFECTS | in nuclear ground state drive the high-energy and

high-momentum component of the nuclear spectrum, when | € | increases

Peor(e, P) = Mret(P) <5 (8 % + FE4 g — EA>>

_|_
P = 7Dl\'IF 3+ 7Dcor

CM
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OFF-SHELL FUNCTION FROM HEAVY TARGETS (A > 4)
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4+ 6f(x) extracted phenomenologically from nuclear DIS ratios Ro(A, B) = F{'/FE:

e Electron and muon scattering from BCDMS, EMC,E139,E140,E665 and NMC
e Wide range of targets *He," Li,° Be,'? C,?" Al *° Ca,"% Fe,%* Cu,1%® Ag, 119 Sn, 197 Au,?°" Pb
e Systematic uncertainties including modeling, functional form and spectral/wave function variations

= Partial cancellation of systematics from spectral function in RATIOS Rs(A, B)

Roberto Petti
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FLAVOR AND C-PARITY DEPENDENCE OF nPDFs

4 Impulse Approximation (IA) from the convolution of isoscalar qy=u+d and
isovector ¢qy=u-d nucleon PDF with the corresponding spectral functions:

qg)?A — (fP/A + f”/A> N2 qo/p 7DO — 7DMF + 7Dcor
Q{?A - (fp/A - fn/A) D q1/p P = ’ ¢F(P) ’2 5(5 - 5F)

4 Off-shell effect controlled by the nucleon ¢ f(x) function

= We assume universal § f for all partons for simplicity
= Verify isospin and/or flavor dependance with data from flavor-sensitive processes.

4 Nuclear shadowing depends on C-parity ¢t = q £ §:
ORY = ImA(at)/Alma™ OR™ = Ima As(a™)/ATma™

where Ai(a) = 0A(a)da and a* = a + a are the amplitudes of definite C' parity.

o |0R™| > |0R ™| because of the nonlinear dependence A(a).
e OR~ is independent of the cross section o~ = 2Ilma~. However it nonlinearly depends on a™.

4 For isoscalar targets nuclear pion (meson) correction to valence distributions cancels
out (isospin symmetry) 6.y, = 0
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PREDICTIONS FOR (ANTI)NEUTRINO DIS DATA
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4 Model of nuclear corrections for (anti)neutrino cross-sections based on results from
e/ DIS off nuclear targets and fully independent from (anti)neutrino data
(S. Kulagin and R.P., NPA 765 (2006) 126; PRD 76 (2007) 094023, PRC 82 (2010) 054614).

4 Comparison with NuTeV (Fe) and CHORUS (Pb) cross-section data (band +2.5% ):
e Systematic excess observed for x > 0.5 in both v and v NuTeV data on Fe
e CHORUS data on Pb target consistent with predictions at large x;
e Consistent excess observed at x < 0.05 in both CHORUS and NuTeV neutrino data
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