

CMS Experiment at LHC, CERN Data recorded: Tue May 25 06:24:04 2010 CEST Run/Event: 136100 / 103078800 Lumi section: 348

Measurements of dijet azimuthal decorrelation at 8 TeV from CMS

P. Kokkas University of Ioannina, Greece On behalf of the CMS Collaboration

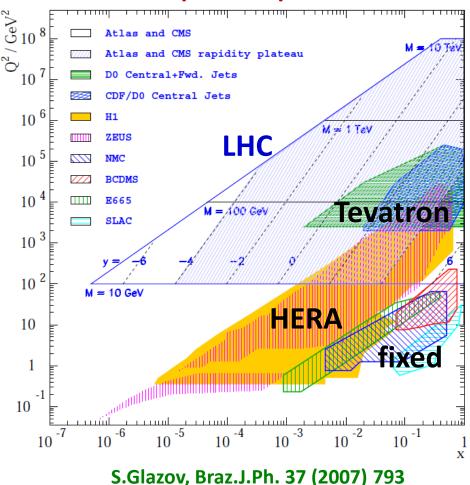
DIS 2016 : XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects, 11-15 Apr 2016, DESY, Hamburg (Germany)

lectromagnetic Calorimeter (ECAL)

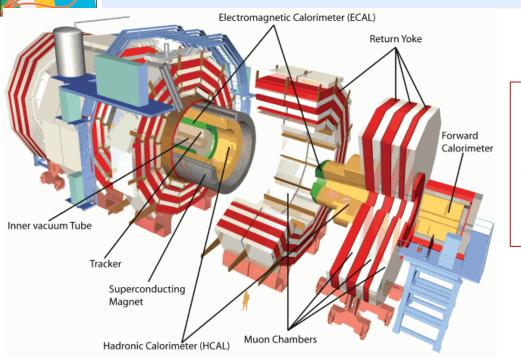
Return Yoke

- Introduction
- Jet Reconstruction
- Jet Energy Scale Calibration at 8 TeV
- Measurements of dijet azimuthal decorrelation at 8 TeV
 - Description of the measurement
 - Comparison to fixed-orer NLO calculations in pQCD
 - Comparison to MC generators matched to parton shower simulations
- Summary

Superconductin Magnet



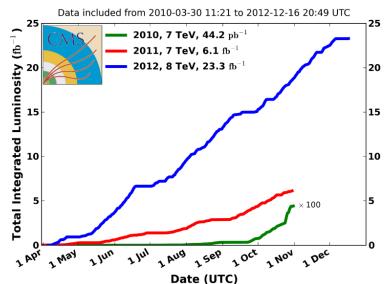
Introduction



- QCD processes are dominant at LHC.
 LHC is a jet factory.
- Jet measurements @ LHC
 - provide a test of pQCD in a previously unexplored energy region.
 - Check SM predictions at high energy scales.
 - Measure and understand the main background to many new physics searches.
 - Provide constraints on PDF's and probe the highest energy transfers at which to determine α_s .
 - Excellent place to study multi-jet production.

Kinematic plane of process Q² vs x

CMS detector and Integrated Luminosity



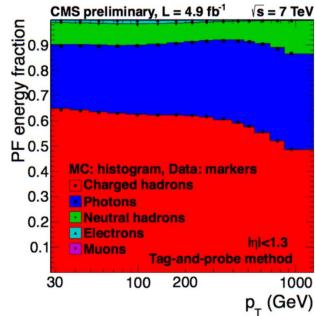
Very successful LHC operation and CMS data recording during Run 1 :

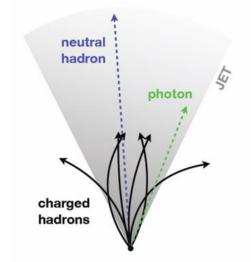
- 7 TeV (2010 & 2011)
- 8 TeV (2012)

CMS detector pseudorapidity coverage:

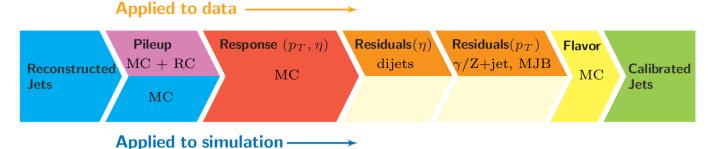
- Tracking: |η|<2.5
- Central Calorimetry: |η|<3
- Forward Calorimetry: 3<|η|<5

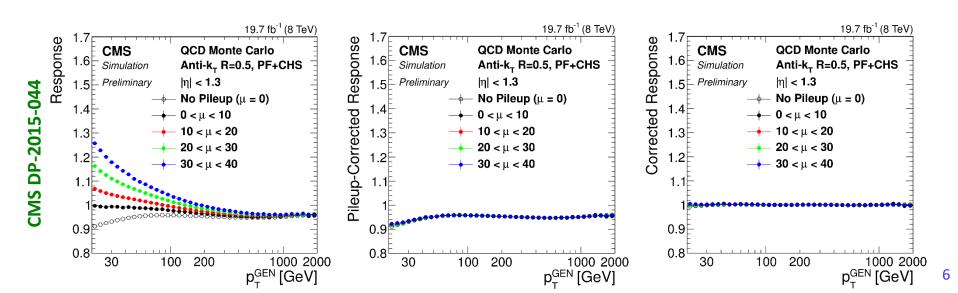
CMS Integrated Luminosity, pp




Jet Reconstruction

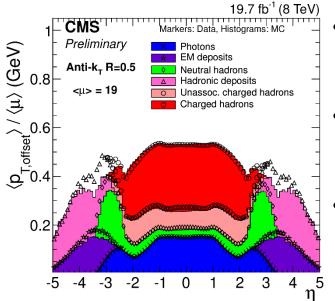
- Anti-k_t clustering algorithm : Infrared and collinear safe. Used with R=0.5 and 0.7 (for LHC Run 1).
- **CMS** Particle Flow Jets (PF Jets) : Clustering of Particle Flow candidates constructed by combining information from all sub-detector systems.

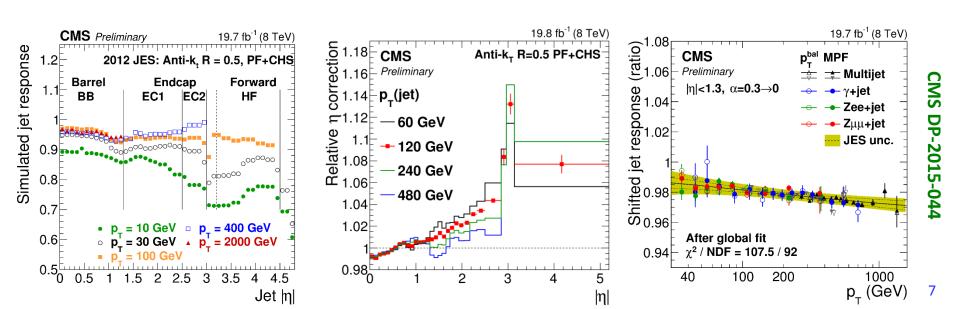

- PF Jet composition
 - Charged hadrons ≈ 60%
 - Photons ≈ 30%
 - Neutral hadrons ≈ 10%
 - Leptons ≈ 2%


Jet Energy Scale Calibration at 8 TeV

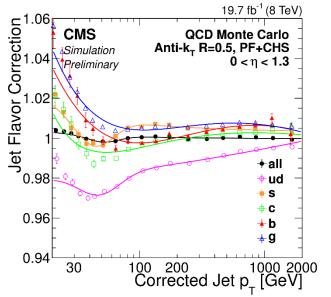
4. 1970

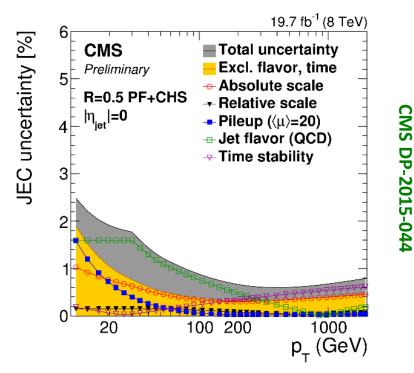
• For the jet energy scale calibration CMS adopted a Factorized approach.


- **Pileup** → corrects for "offset" energy
- **Response** \rightarrow Make jet response flat on η and p_T
- Data/MC residuals → residual differences between data and MC
- Flavor (optional) → corrects dependence on jet flavor



Jet Energy Scale Calibration


- **Pileup** : subtracts offset energy from multiple pp collisions $P_{T,reco}$ (WithPU) $\rightarrow P_{T,reco}$ (NoPU)
- Simulated Response : Flattens jet response vs η and $p_T P_{T,reco}(MC) \rightarrow P_{T,ptcl}(MC)$
 - **Residuals** : Data/MC differences $P_{T,reco}(data) \rightarrow P_{T,reco}(MC)$
 - Relative (η) : derived from dijet balance
 - Absolute (p_T) : derived from $\gamma, Z + jet$ and multijets


Jet Energy Scale Calibration

 In the important parts of the phase space JEC uncertainties are of the order of 1%.

- Flavor (optional) : corrects dependense on jet flavor p_T(ud,s,c,b,g) →p_T(QCD mixture)
 - ud have the highest response
 - g the lowest (larger number of soft particles)
 - cbs response in between

Measurements of dijet azimuthal decorrelation at 8 TeV

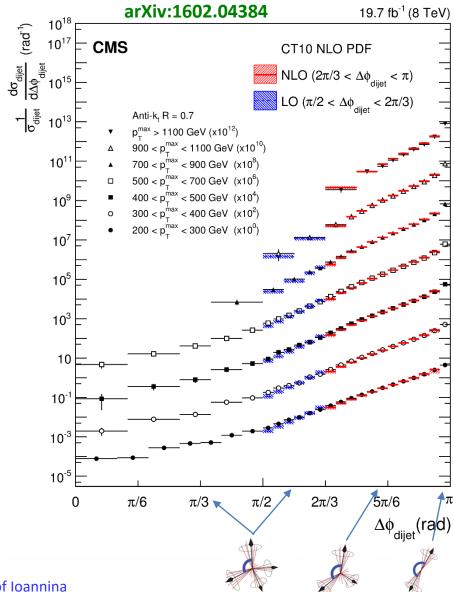
• At LO in pQCD the two final-state partons are produced back-to-back in transverse plane.

• The production of a third jet leads to a decorrelation in azimuthal angle.

- If more than three jets are produced, the azimuthal angle between the two leading jets can approach zero.
- The dijet azimuthal angular decorrelation probes the multijet production processes without measuring jets beyond the leading two.

 $2\pi/3 \leq \Delta \varphi_{\text{dijet}} < \pi$

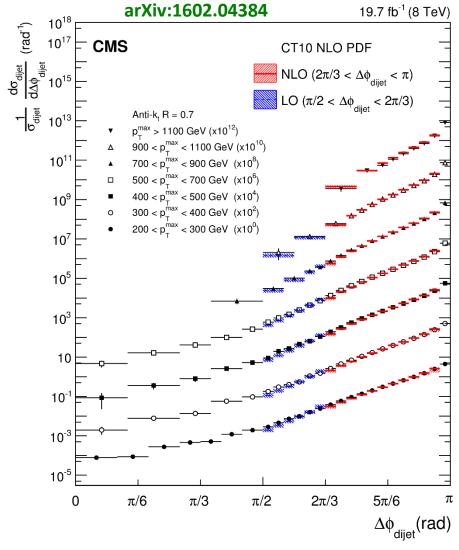
 $\Delta \phi_{\text{dijet}} = \pi$


The Measurement

• The observable:

 $\frac{1}{\sigma_{\rm dijet}} \frac{{\rm d}\sigma_{\rm dijet}}{{\rm d}\Delta\phi_{\rm dijet}}$

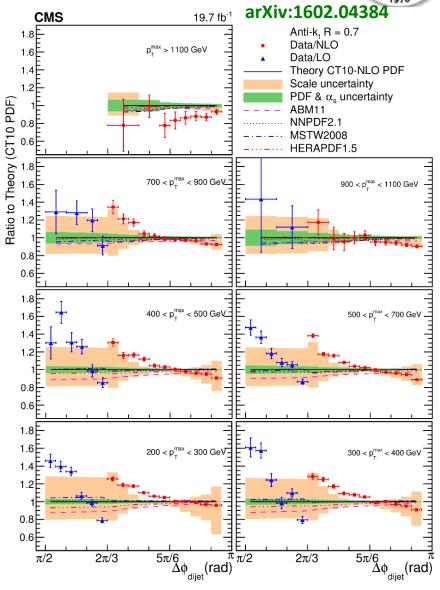
- Jet $p_T > 100 \text{GeV}$, |y| < 2.5
- Measured for seven regions of the leading jet p_{T}^{max}
- Systematics
 - Jet Energy Scale : 7% 1%
 - Jet Energy Resolution : 5% 0.5%
 - Unfolding 1%
- The $\Delta \phi_{dijet}$ distributions are strongly peaked at π and become steeper with increasing p_T^{max} .


PDFs

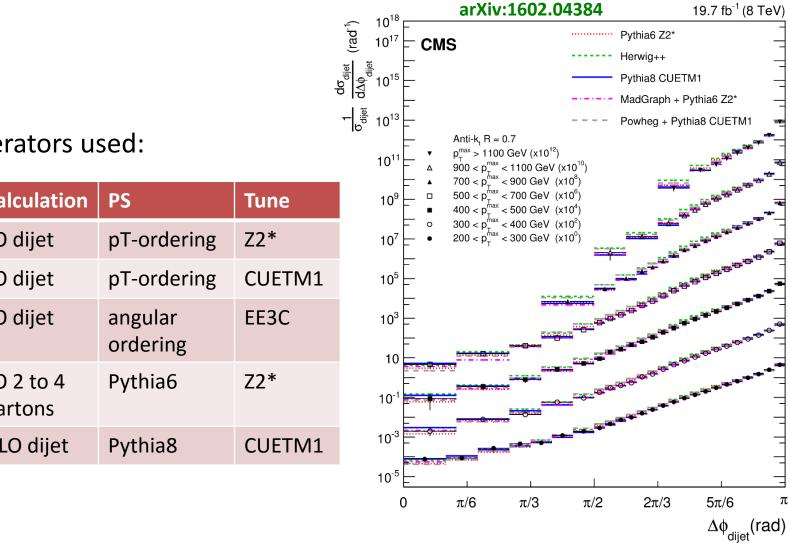
Comparison to fixed-order NLO calculations in pQCD

- Calculations performed with NLOJET++ & FASTNLO.
- 3-jet NLO calculation (3-4 partons):
 - NLO precision : $2\pi/3 \leq \Delta \phi_{dijet} < \pi$
 - LO precision : $\pi/2 \leq \Delta \phi_{
 m dijet} < 2\pi/3$
- Normalization to dijet cross section:
 - NLO : $2\pi/3 \le \Delta \phi_{dijet} < \pi$
 - LO: $\pi/2 \leq \Delta \phi_{dijet} < 2\pi/3$
- Scale choice : $\mu_r = \mu_f = p_T^{max}$

Base set	Refs.	N_{f}	$\alpha_S(M_Z)$
ABM11	[30]	5	0.1180
CT10	[31]	≤ 5	0.1180
HERAPDF1.5	[32]	≤ 5	0.1176
MSTW2008	[33]	≤ 5	0.1202
NNPDF21	[34]	≤ 6	0.1190

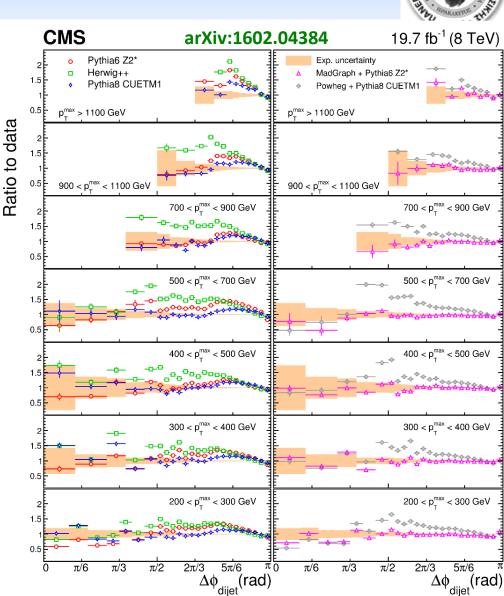


Comparison to fixed-order NLO calculations in pQCD


- Scale uncertainty : varying independently μ_r/Q and μ_f/Q from ½ to 2, and get maximal deviation.
- **PDF uncertainty** : following prescriptions of CT10 set, varying eigenvectors up and down.
- α_s uncertainty : vary $\alpha_s(M_z)$ by ±0.001.
- Nice agreement for $\Delta \phi_{dijet} > \frac{5\pi}{6}$, except for the highest p_T^{max} region.
- For $\frac{2\pi}{3} \leq \Delta \phi_{dijet} < \frac{5\pi}{6}$ systematic discrepancies are exhibited that diminish with increasing p_T^{max}
- For $\frac{\pi}{2} \le \Delta \phi_{dijet} < \frac{2\pi}{3}$ same pattern but with less significance.

Comparison to MC generators

MC generators used:


Generator	Calculation	PS	Tune
Pythia6	LO dijet	pT-ordering	Z2*
Pythia8	LO dijet	pT-ordering	CUETM1
Herwig++	LO dijet	angular ordering	EE3C
MadGraph	LO 2 to 4 partons	Pythia6	Z2*
Powheg	NLO dijet	Pythia8	CUETM1

π

Comparison to MC generators

- LO dijet event generators Pythia6, Pythia8 and Herwig++ shows deviations from data.
- Similar behaviour for the NLO dijet generator Powheg matched to Pythia8.
- Best description by the tree-level multiparton event generator MADGRAPH interfaced with PYTHIA6.

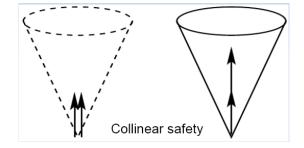
- CMS has an excellent understanding of the jet reconstruction and energy calibration and together with the high data quality make jet measurements PRECISION PHYSICS.
 - In the important parts of the phase space JEC uncertainties are of the order of 1%.
- The measurements of **dijet azimuthal decorrelation** at **8 TeV** is presented
 - Presented for the first time in the whole phase space : $0 \le \Delta \varphi_{dijet} < \pi$
 - Comparison to fixed order NLO calculations show an overall agreement to data (some systematic discrepancies are exhibited)
 - Best description of data by the tree-level multiparton event generator **MADGRAPH**
 - The observations emphasizes the need to improve predictions for multijet production.

http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-14-015/index.html

SPARE SLIDES

P.Kokkas, Univ. of Ioannina

Jet reconstruction algorithm requirements


ON THE REAL PROPERTY OF THE PR

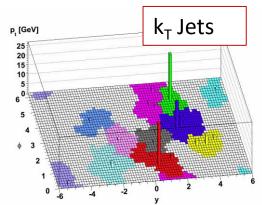
- Infrared safety
 - A jet algorithm is infrared safe if, for any n-parton configuration, adding an infinitely soft parton does not affect the result at all.

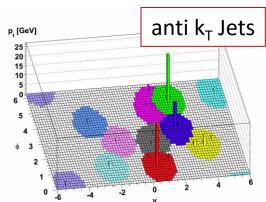
soft radiation may cause merging of 2 jets

- Collinear safety
 - A jet algorithm is collinear safe if, for any n-parton configuration, replacing any massless parton by an exactly collinear pair of massless partons does not affect the result at all.

- Same jet algorithms for data and theoretical predictions.
 - so that perturbative calculations can be compared to experiments.
- Detector independence.
- Not too sensitive to underlying event and pile up.

k_{T} and anti- k_{T} : Sequential Recombination Algorithms

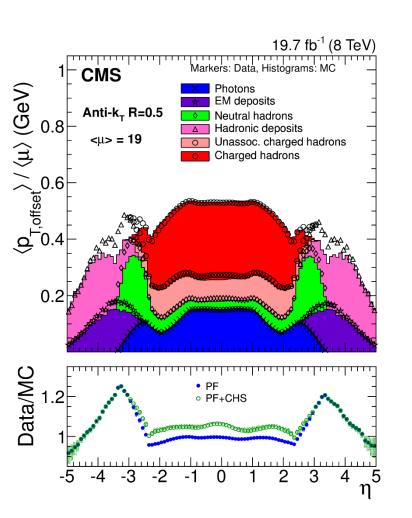



• The algorithm first defines for each protojet its beam distance: $d_{iB} = k_{ti}^{n}$ and for each pair of protojets *i*,*j* their relative distance :

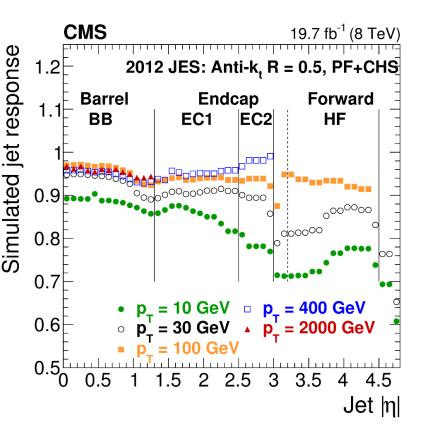
$$d_{ij} = \min\left(k_{ii}^{n}, k_{ij}^{n}\right) \frac{\Delta R_{ij}^{2}}{D^{2}} \quad \text{where} \quad \Delta R_{ij}^{2} = \left(y_{i} - y_{j}\right)^{2} + \left(\varphi_{i} - \varphi_{j}\right)^{2}$$

with *D* a jet radious resolution parameter being of the order of unity and k_{ti} , y_i and φ_i the transverse momentum, rapidity and azimuth of particle *i*, respectively.

- In a second step, if $d_{ij} \ge d_{iB}$ the protojet *i* is defined as a jet and removed from the list, otherwise the two protojets *i* and *j* combine into a single object.
- k_T algorithm is defined for n=2 and favours clustering of low p_T protojets.
- **anti-k_T algorithm** is defined for n=-2 and favours clustering of high p_T protojets.
- Both algorithms are infrared and collinear safe.

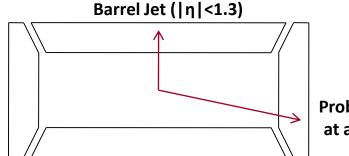


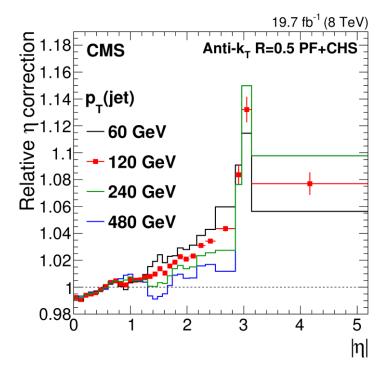
Pilup offset corrections



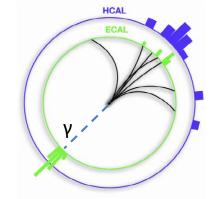
- The Pileup offset corrections:
 - determined from simulation (QCD) with and without pileup
- Parametrized vs:
 - The offset energy density p
 - The jet area A
 - The jet η
 - The jet p_T
- Residual differences between data-MC vs η
 - Determined using the Random Cone (RC) method on minimum bias events
- PFchs jets :
 - Charged Hadron Substruction (CHS) method remove tracks originated from pileup vertices.

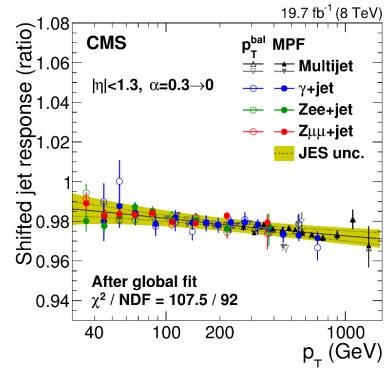
Simulated jet Response


- Simulated jet response corrections:
 - Determined from Pythia6 Z2*
 - Detector simulation with GEANT4
- Corrections have:
 - Stable response in barrel
 - Lower response in endcaps
 - HF performance similar to endcap
- Uncertainties:
 - Modelling jet fragmentation (comparison to Herwig++ EE3C)
 - From detector simulation using the CMA fast simulation


Residual η (Relative) corrections

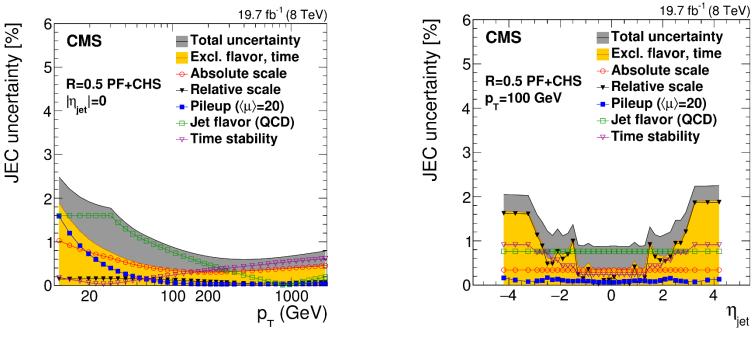
- Residual Relative corrections:
 - Determined by dijet events.
 - The dijet p_T balance technique is employed taking the barrel jet (|η|<1.3) as reference and the other jet (probe jet) at any η.


- Residual Relative corrections:
 - Increases at low p_T in endcaps.
 - Large 10% residual in HF



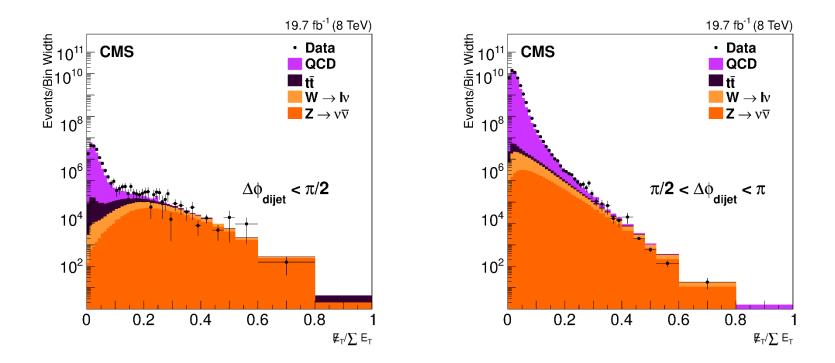
Residual Absolute Scale Correction

- Residual absolute corrections:
 - Using γ , Z + jet (30<p_T<800 GeV)
 - Using multijets (p_T>800 GeV)
- Methods
 - The MPF (missing E_T projection fraction)
 - And the p_T balance
 - Both methods exploit the balance in the transverse plane between the γ , Z and the recoiling jet
- Final result from a global fit to γ , Z + jet and multijet data.



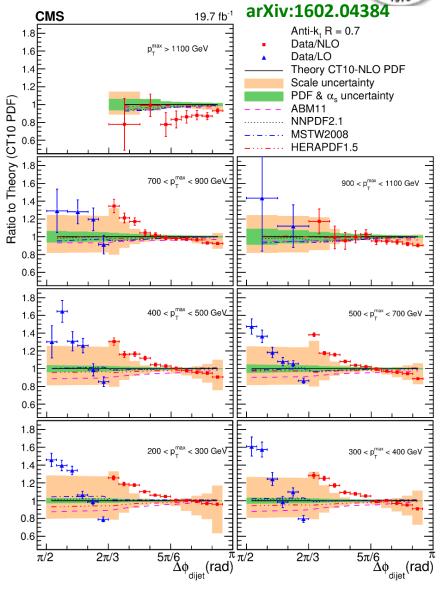
Total JEC uncertainties

- JetFlavorQCD is the dominant JEC for inclusive jets
- Time stability dominant at high p_T (excluded if whole 8TeV sample is used)
- **Pileup** uncertainty is small due to absorption into residual $\eta + p_T$ corrections
- Other main uncertainties are **absolute** and relative **scale**
 - Minimum of 0.32% at $p_T=200 \text{ GeV}$ and $|\eta|=0$ (excluding flavour and time)
 - Minimum of 0.60% at p_T=400 GeV and |η|=0 (all uncertainties)



MET/SumET selection cut

• Optimization of background in small $\Delta \phi_{dijet}$



Comparison to fixed-order NLO calculations in pQCD

- 3-jet NLO calculation (α_S^4 , 3-4 partons):
 - NLO precision : $2\pi/3 \le \Delta \phi_{
 m dijet} < \pi$
 - LO precision : $\pi/2 \leq \Delta \phi_{dijet} < 2\pi/3$
- Normalization to dijet cross section:
 - NLO : $2\pi/3 \leq \Delta \phi_{dijet} < \pi$
 - LO: $\pi/2 \leq \Delta \phi_{dijet} < 2\pi/3$
- Improved description of data at $\pi/2 \le \Delta \phi_{dijet} < 2\pi/3$ by normalizing with LO dijet cross section. Avoids artificially increased scale uncertainties see:
 - JHEP 12(2015) 024
 - Nucl.Phys. B 513 (1998) 269

