Top Quark Mass Calibration for Monte-Carlo Event Generators

André H. Hoang

University of Vienna

Outline

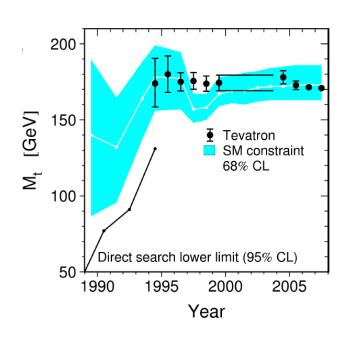
- Basic methods for top mass measurements
- Monte Carlo generators and the top quark mass
- Calibration of the Monte Carlo top mass parameter
- Preliminary results of first serious analysis

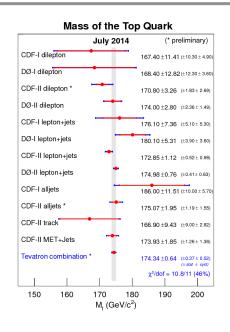
In collaboration with:

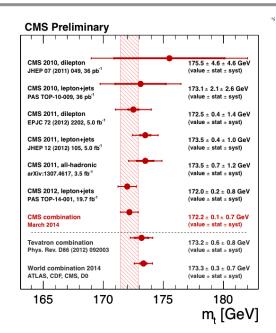
M. Butenschön

B. Dehnadi,

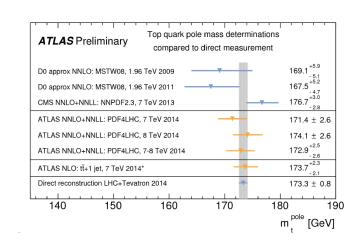
V. Mateu,


M. Preisser


I. Stewart



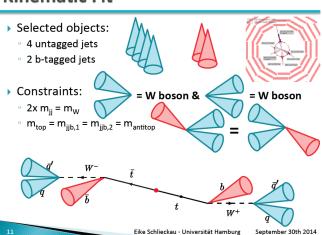
A small history on top mass reconstruction

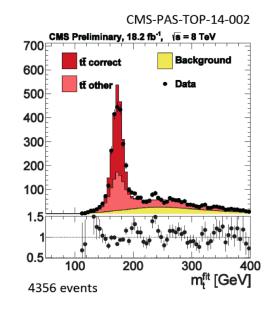


- Many individual measurements with uncertainty below 1 GeV.
- Smallest errors from direct reconstruction/ template fits
- World combination 2014:

$$m_t^{\rm MC} = 173.34 \pm 0.76 \,{\rm GeV}$$

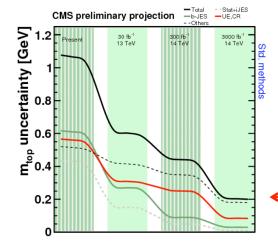
Talks by Shabalina, Bevilacqua, Thier




Main Top Mass Measurements Methods

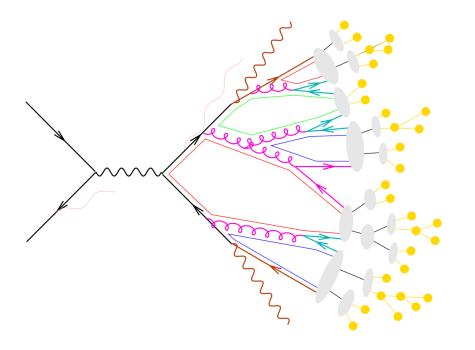
LHC+Tevatron

Direct Reconstruction:


Kinematic Fit

Determination of the best-fit value of the Monte-Carlo top quark mass parameter

kinematic mass determination


- High top mass sensitivity
- Precision of MC ?
- → Meaning of m_t^{MC} ?

 $\Delta m_t \gtrsim 0.5 \text{ GeV}$

 $\Delta m_t \sim 200 \text{ MeV (projection)}$

Monte-Carlo Event Generators

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster → hadrons
- hadronic decays

- Full simulation of all processes (all experimental aspects accessible)
- QCD-inspired: partly first principles QCD ⇔ partly model
- Description power of data better than intrinsic accuracy. (But how precise?)
- Top quark: treated like a real particle (m_t^{MC} ≈ m_t^{pole} +?).

But pole mass ambiguous by O(1 GeV) due to confinement. Better mass definition needed.

MC Top Quark Mass

AHH, Stewart 2008 AHH, 2014

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t,\mathrm{MC}}(1~\mathrm{GeV}) \sim \mathcal{O}(1~\mathrm{GeV})$$

- small size of $\Delta_{t,MC}$
- Renormalon-free
- little parametric dependence on other parameters

MSR Mass Definition

MS Scheme: $(\mu > \overline{m}(\overline{m}))$

$$\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42441 \,\alpha_s(\overline{m}) + 0.8345 \,\alpha_s^2(\overline{m}) + 2.368 \,\alpha_s^3(\overline{m}) + \ldots \right]$$

 $\underline{\mathsf{MSR Scheme:}} \qquad (R < \overline{m}(\overline{m}))$

$$m_{\text{MSR}}(R) - m^{\text{pole}} = -R \left[0.42441 \,\alpha_s(R) + 0.8345 \,\alpha_s^2(R) + 2.368 \,\alpha_s^3(R) + \ldots \right]$$

$$m_{\mathrm{MSR}}(m_{\mathrm{MSR}}) = \overline{m}(\overline{m})$$

 $\Longrightarrow m_{ ext{MSR}}(R)$ Short-distance mass that smoothly interpolates all R scales

Calibration of the MC Top Mass

Method:

- 1) Strongly mass-sensitive observable (closely related to reconstructed invariant mass distribution!)
- ✓ 2) Accurate analytic <u>hadron level QCD</u> predictions at ≥ NLL/NLO with full control over the quark mass scheme dependence.
- ✓ 3) QCD masses as function of m_t^{MC} from fits of observable.
 - 4) Cross check observable independence

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t,\mathrm{MC}}(1 \mathrm{\ GeV}) = \bar{\Delta} + \delta \Delta_{\mathrm{MC}} + \delta \Delta_{\mathrm{pQCD}} + \delta \Delta_{\mathrm{param}}$$

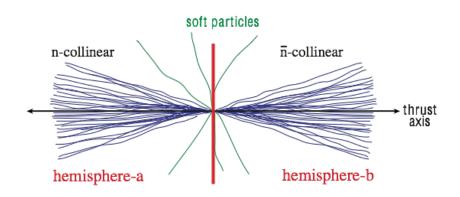
Monte Carlo errors:

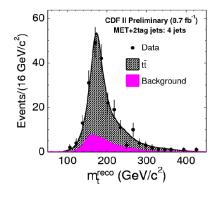
- different tunings
- parton showers
- color reconnection
- Intrinsic error, ...

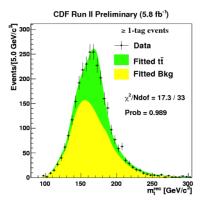
QCD errors:

- perturbative error
- scale uncertainties
- · electroweak effects

- strong coupling α_s
- Non-perturbative parameters

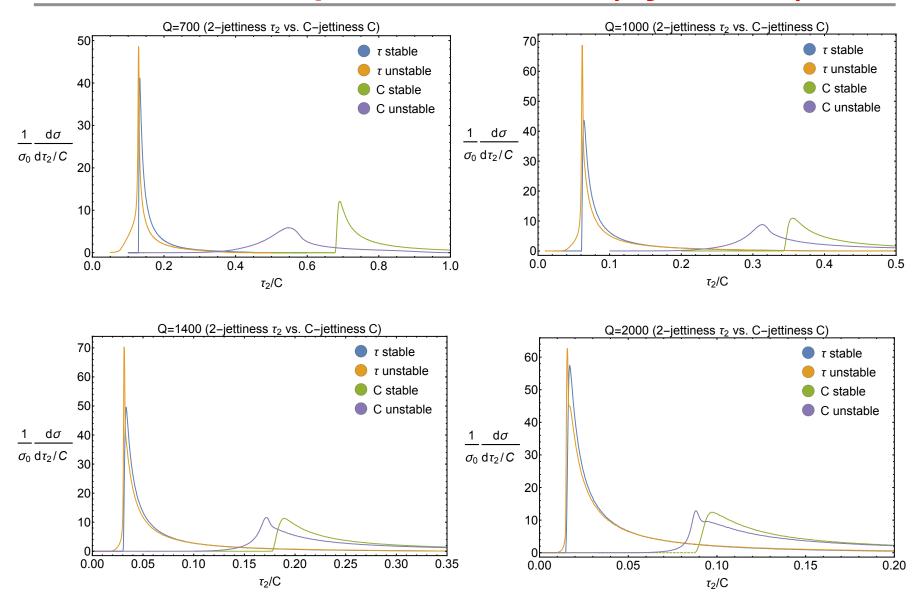

Thrust Distribution

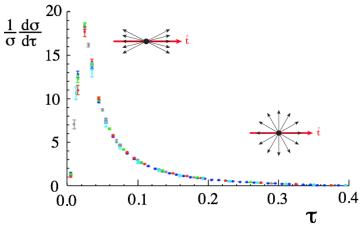

Observable: 2-jettiness in e+e- for $Q \sim p_T \gg m_t$ (boosted tops)


$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$

$$\tau \stackrel{0}{\approx} \frac{M_1^2 + M_2^2}{Q^2}$$

Invariant mass distribution in the resonance region of wide hemisphere jets!




Event Shape Distributions (Pythia 8.2)

Factorization for Event Shapes

$$rac{\mathrm{d}\sigma}{\mathrm{d} au} = \mathit{Q}^2\sigma_0\mathit{H}_0(\mathit{Q},\mu)\int \mathit{d}\ell \; \mathit{J}_0(\mathit{Q}\ell,\mu)\, \mathit{S}_0\left(\mathit{Q} au-\ell,\mu
ight)$$

Massless quarks:

Korshemski, Sterman 1995-2000 Bauer, Fleming, Lee, Sterman (2008)

Becher, Schwartz (2008)

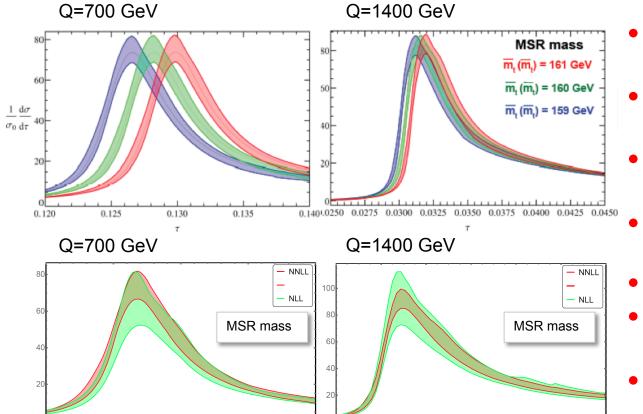
Abbate, AHH, Fickinger, Mateu, Stewart 2010

Extension to massive quarks:

- VFNS for final state jets (with massive quarks): log summation incl. mass
- Boostet fat top jets

Fleming, AHH, Mantry, Stewart 2007

Gritschacher, AHH, Jemos, Mateu Pietrulewicz 2013-2014


Butenschön, Dehnadi, AHH, Mateu 2016 (to appear soon)

NNLL + NLO + non-singular + hadronization + renormalon-subtraction

2-Jettiness for Top Production (QCD)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = f(m_t^{\mathrm{MSR}}(R), \alpha_s(M_Z), \Omega_1, \Omega_2, \dots, \mu_h, \mu_j, \mu_s, \mu_m, R, \Gamma_t)$$
 any scheme possible Non-perturbative renorm. scales finite lifetime

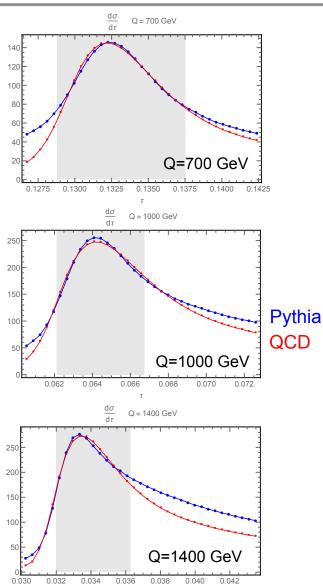
0.135

- Higher mass sensitivity for lower Q (p_T)
- Finite lifetime effects included
- Dependence on nonperturbative parameters
- Convergence: Ω_{1,2,...}
- Good convergence
- Reduction of scale uncertainty (NLL to NNLL)
- Control over whole distribution

0.125

0.038

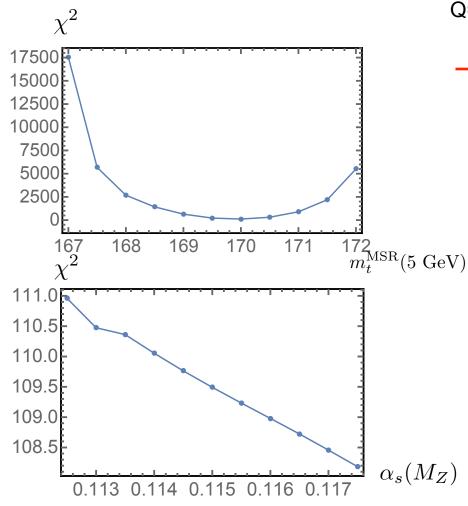
Fit Procedure Details


$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = f(m_t^{\mathrm{MSR}}(R), \alpha_s(M_Z), \Omega_1, \Omega_2, \dots, \mu_h, \mu_j, \mu_s, \mu_m, R, \Gamma_t)$$
 any scheme possible Non-perturbative renorm. scales finite lifetime

QCD parameters measured from Pythia

- Fit parameters: $m_t^{\text{MSR}}(R), \, \alpha_s(M_Z), \, \Omega_1, \, \Omega_2, \, \ldots,$
- Perturbative error: fits for 500 randomly picked sets of renor. scales
- Tunings: 1, 3, 7 (default)
- Top quark width: $\Gamma_t = \text{dynamical (default)}, 0.7, 1.4, 2.0 \,\text{GeV}$
- External smearing (Detector effects): $\Omega_{1,\mathrm{smear}} = 0, 0.5, \ldots, 3.0, 3.5, \, \mathrm{GeV}$
- Pythia masses: $m_t^{\text{Pythia}} = 170, \ldots, 175 \, \text{GeV}$
- Fit possible for any mass scheme

Preliminary Peak Fits



Default renormalization scales; Γ_t =1.4 GeV, tune 7, $\Omega_{1,smear}$ =2.5 GeV, m_t^{Pythia} =171 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%

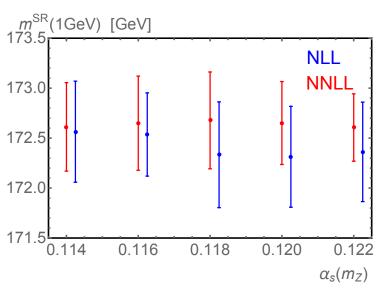
- Good agreement of Pythia 8.2 with NNLL+NLO QCD description
- Pythia statistics: 10⁶ events
- Discrepancies in distribution tail and for higher energies (Pythia is less reliable where fixed-order results valid, well reliable in softcollinear limit)
- Excellent sensitivity to the top quark mass.

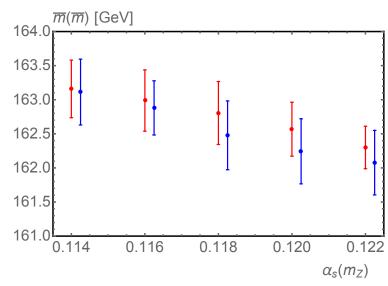
Default renormalization scales; Γ_t =1.4 GeV, tune 7, $\Omega_{1,smear}$ =2.5 GeV, m_t^{Pythia} =171 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%

$$\rightarrow$$
 $\chi^2_{\text{min}} \sim O(100)$

- Very strong sensitivity to m_t
- Low sensitivity to strong coupling
- Take strong coupling as input
- χ^2_{min} and δm_t^{stat} do not have any physical meaning
- We use rescaled χ²/dof (PDG prescreption) to defind "intrinsic MC compatibility uncertainty"

First serious run:


$$\Gamma_t$$
=1.4 GeV, tunes 1, 3, 7,


 $\Omega_{1.smear}$ =1.5, 2.0, 2.5, 3.0, 3.5 GeV,

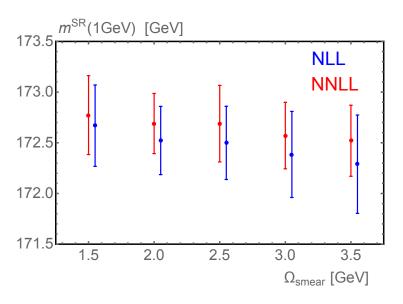
Q={700, 1000, 1400} GeV, peak fit (60/80)%

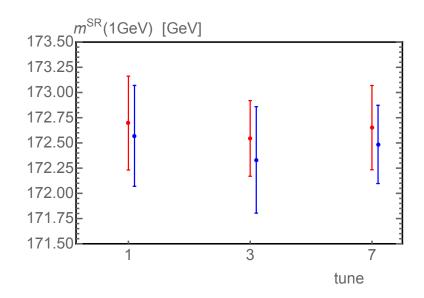
m_t^{Pythia}=173 GeV,

Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

- Very low sensitivity of $m_t^{MSR}(5\text{GeV})$ on $\alpha_s(M_z)$.
- Large sensitivity of MSbar mass on $\alpha_s(M_z)$.

MC top mass indeed closely related to m_tMSR(R~1 GeV) !!




First serious run:

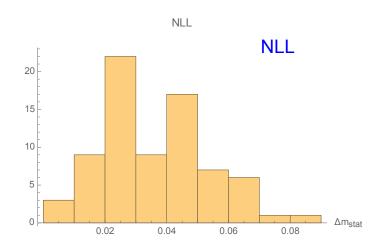
$$\Gamma_{t}$$
=1.4 GeV, tunes 1, 3, 7,

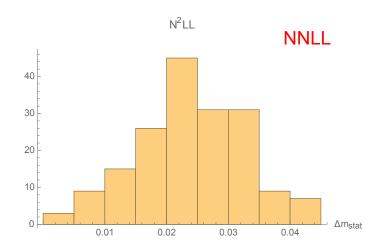
$$\Omega_{1,smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

- "Detector effects" (~100 MeV) << perturbative uncertainty (≤ 500 MeV).
- MC tune dependence (\leq 100 MeV) << perturbative uncertainty (\leq 500 MeV).

MC top mass indeed closely related to m_tMSR(R~1 GeV) !!


First serious run:


$$\Gamma_{t}$$
=1.4 GeV, tunes 1, 3, 7,

$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

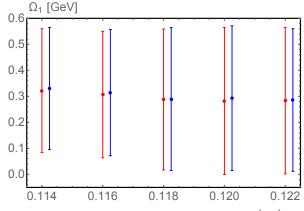
m_t^{Pythia}=173 GeV,

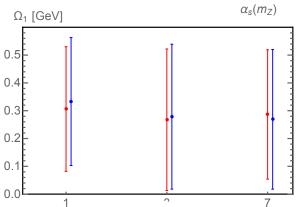
Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

- "MC compatibility error" ~ tuning error ~ detector effect error ✔
- Effects are O(100) MeV. (Maybe represents for ultimate precision)

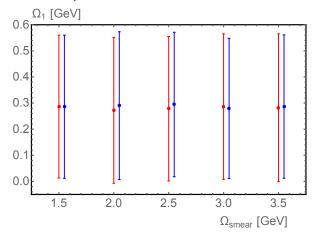
First serious run:

 Γ_{t} =1.4 GeV, tunes 1, 3, 7,


$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,


Q={700, 1000, 1400} GeV, peak fit (60/80)%

NLL NNLL


m_tPythia=173 GeV,

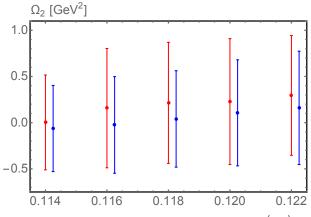
Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

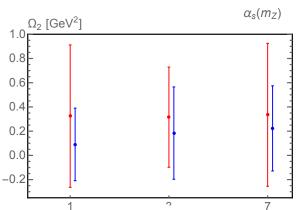
tune

- Reliable determination of nonperturbative matrix element Ω₁ (hadronization effects)
- Expected: $\delta m_t \sim \delta \Omega_1$
- Compatible with α_s -fits to e^+e^- data tail fits (Abbate etal, AHH etal.), larger err.

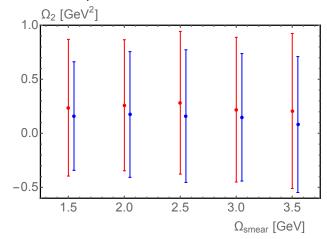
First serious run:

 Γ_{t} =1.4 GeV, tunes 1, 3, 7,


$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,


Q={700, 1000, 1400} GeV, peak fit (60/80)%

NLL NNLL


m_tPythia=173 GeV,

Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

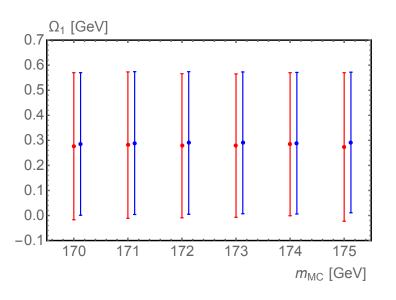
tune

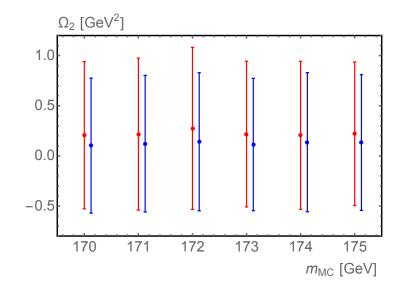
- Reliable determination of nonperturbative matrix element Ω_2 (hadronization effects)
- Found to be have huge error as expected due to little sensitivity 🗸

First serious run:

 Γ_{t} =1.4 GeV, tunes 1, 3, 7,

$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,


Q={700, 1000, 1400} GeV, peak fit (60/80)%


m_tPythia=170,171, 172, 173, 174, 175 GeV

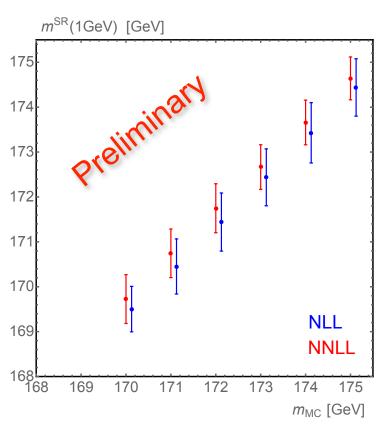
NLL NNLL

NLL: 177 scan survivors, NNLL: 254 scan survivors

Preliminary

Non-pert. matrix elements $\Omega_{1,2}$ independent of top mass. \checkmark

First serious run:


$$\Gamma_{t}$$
=1.4 GeV, tunes 1, 3, 7,

$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

Q={700, 1000, 1400} GeV, peak fit (60/80)%

m_tPythia=170,171, 172, 173, 174, 175 GeV

NLL: 177 scan survivors, NNLL: 254 scan survivors

- Many more cross checks to be done.
- Calibration error: 0.5 GeV seems feasible at NNLL!

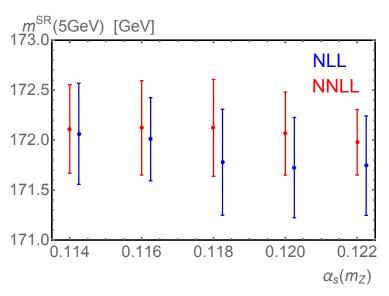
Conclusions & Outlook

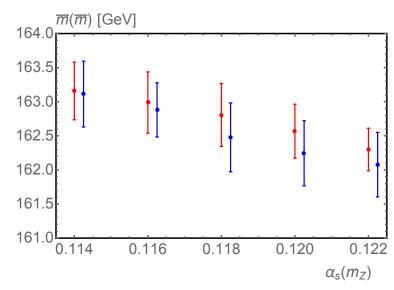
- First serious precise MC top quark mass calibration based on e⁺e⁻ 2-jettiness (large p_T): preliminary results.
- NNLL+NLO QCD calculations based on an extension of the SCET approach concerning massive quark effects (all large logs incl. Ln(m)'s summed systematically).
- The Monte Carlo top mass calibration in terms of MSR mass with perturbative error O(500 MeV) appears feasible at NNLL+NLO
- Intrinsic MC error seems O(100 MeV).

Outlook:

- Full verified error analysis @ NNLL+NLO on the way
- Calibration for other MC generators
- Heavy jet mass, C-parameter (NNLL), pp-2 jettiness analysis (NLL) w.i.p.
- NNNLL+NNLO (2jettiness for e⁺e⁻) w.i.p
- Mass (+ Yukawa coupling) conversions w. QCD + electroweak

Backup Slides


First serious run:


$$\Gamma_t$$
=1.4 GeV, tunes 1, 3, 7,

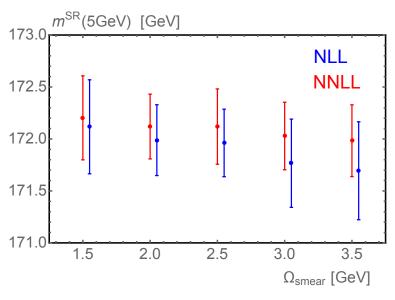
$$\Omega_{1,smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

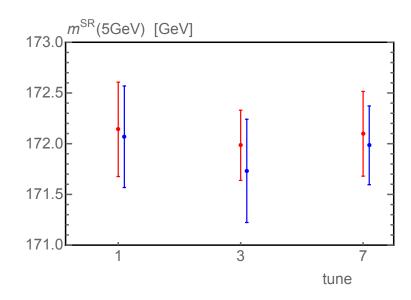
m_t^{Pythia}=173 GeV,

Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

- Very low sensitivity of $m_t^{MSR}(5\text{GeV})$ on $\alpha_s(M_7)$.
- Large sensitivity of MSbar mass on $\alpha_s(M_z)$.

MC top mass indeed closely related to m_tMSR(R~1 GeV) !!


First serious run:


$$\Gamma_t$$
=1.4 GeV, tunes 1, 3, 7,

$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

m_t^{Pythia}=173 GeV,

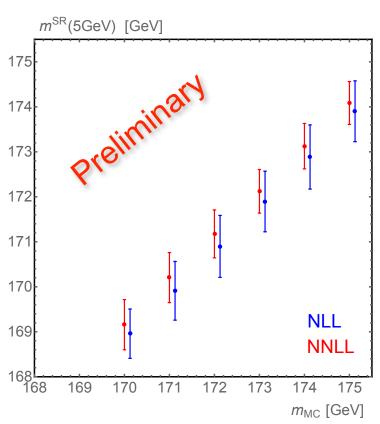
Preliminary NLL: 177 scan survivors, NNLL: 254 scan survivors

"Detector effects" << perturbative uncertainty.

- MC tune dependence << perturbative uncertainty.

MC top mass indeed closely related to m_tMSR(R~1 GeV) !!

First serious run:

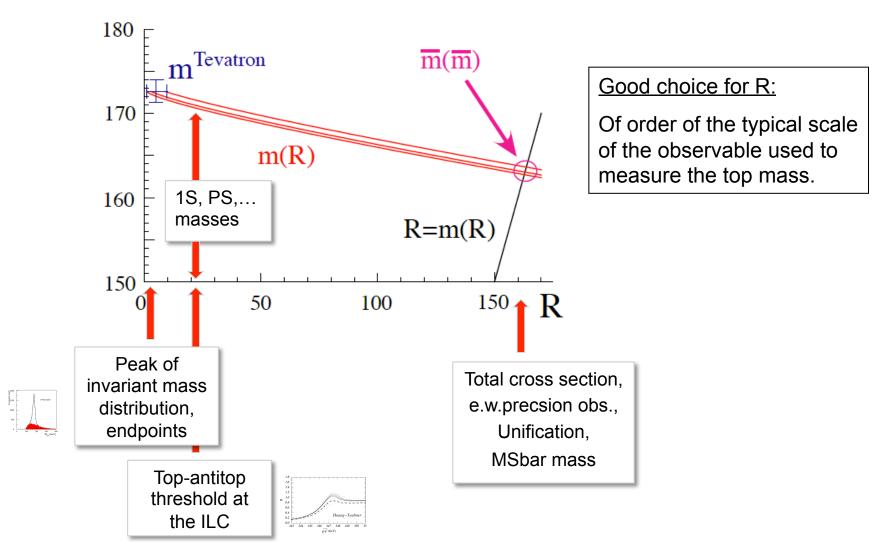

$$\Gamma_{t}$$
=1.4 GeV, tunes 1, 3, 7,

$$\Omega_{1.smear}$$
=1.5, 2.0, 2.5, 3.0, 3.5 GeV,

Q={700, 1000, 1400} GeV, peak fit (60/80)%

m_tPythia=170,171, 172, 173, 174, 175 GeV

NLL: 177 scan survivors, NNLL: 254 scan survivors


- Many more cross checks to be done.
- Calibration error: 0.5 GeV seems feasible at NNLL!

MSR Mass Definition

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(3_{-2}^{+6} \text{ GeV}) = m_t^{\text{MSR}}(3 \text{ GeV})_{-0.3}^{+0.6}$$

AH, Stewart: arXive:0808.0222

Masses Loop-Theorists Like to use

Total cross section (LHC/Tev): •

$$m_t^{\text{MSR}}(R=m_t) = \overline{m}_t(\overline{m}_t)$$

- more inclusive
- sensitive to top production mechanism (pdf, hard scale)
- indirect top mass sensitivity
- large scale radiative corrections

$$M_t = M_t^{(O)} + M_t(0)\alpha_s + \dots$$

Threshold cross section (ILC):

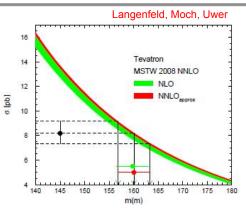
$$m_t^{\rm MSR}(R\sim 20~{\rm GeV})\,,~m_t^{\rm 1S}\,,~m_t^{\rm PS}(R)$$

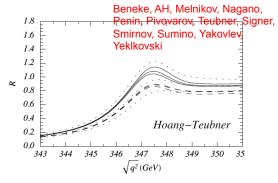
$$M_t = M_t^{(O)} + \langle p_{\text{Bohr}} \rangle \alpha_s + \dots$$

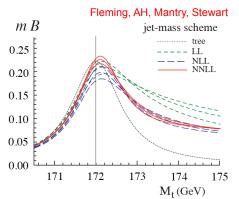
$$\langle p_{\rm Bohr} \rangle = 20 \, {\rm GeV}$$

Mass schemes related to different computational methods

Relations computable in perturbation theory

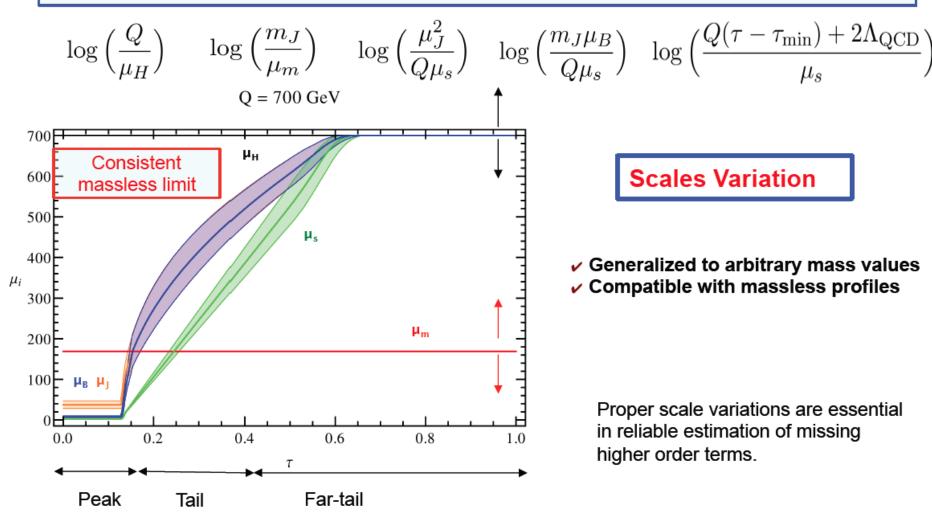



$$m_t^{\text{MSR}}(R \sim \Gamma_t), \ m_t^{\text{jet}}(R)$$


$$M_t = M_t^{(O)} + \Gamma_t \alpha_s + \dots$$

$$\Gamma_t = 1.3 \, \mathrm{GeV}$$

- more exclusive
- sensitive to top final state interactions (low scale)
- direct top mass sensitivity
- small scale radiative corrections

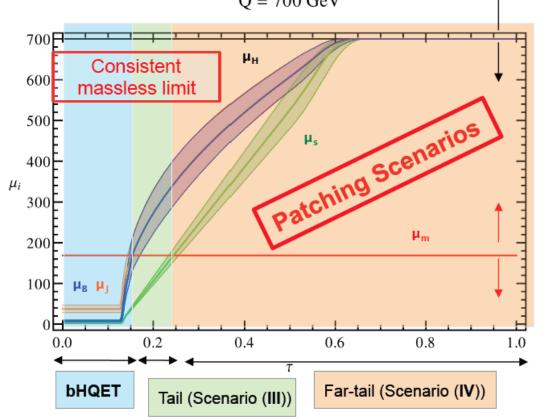


Profile Functions

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.

Scales Variation

- Generalized to arbitrary mass values
- Compatible with massless profiles


Proper scale variations are essential in reliable estimation of missing higher order terms.

Profile Functions

Profile functions should sum up large logarithms and achieve smooth transition between the peak, tail and far-tail.

$$\log\left(\frac{Q}{\mu_H}\right) \qquad \log\left(\frac{m_J}{\mu_m}\right) \qquad \log\left(\frac{\mu_J^2}{Q\mu_s}\right) \qquad \log\left(\frac{m_J\mu_B}{Q\mu_s}\right) \qquad \log\left(\frac{Q(\tau-\tau_{\min})+2\Lambda_{\rm QCD}}{\mu_s}\right)$$
 Q = 700 GeV

Scales Variation

- Generalized to arbitrary mass values
- ✓ Compatible with massless profiles

Proper scale variations are essential in reliable estimation of missing higher order terms.

