Ultra-peripheral collisions in STAR New results from dipions

Spencer R. Klein, LBNL, for the STAR Collaboration

- UPC photoproduction
- The STAR detector
- Trigger
- $\pi \pi$ around the ρ^{0} mass

- ρ, ω and direct $\pi \pi$ contributions
- d σ / dt and nuclear tomography
- A high mass $\pi \pi$ state

Ultra-peripheral photonuclear collisions

Heavy nuclei carry intense photon fields

- Perpendicular E and B fields -> photons Weizsacker-Williams method

- Flux ~ $Z^{2} \alpha$

Large cross-sections for photonuclear interactions

- 'photon-Pomeron' interactions
- Pomeron = absorptive part of cross-section = gluon ladder (BFKL) Couples equally to protons and neutrons
- Some photon-meson interactions, at lower photon energies
- Vector meson dominance predicts mostly JPC=1- states
- $\pi \pi$ final state can come from ρ, ω, direct $\pi \pi$ production or higher excitations
- $\operatorname{Br}\left(\omega->\pi^{+} \pi^{-}\right) \sim 1.5 \%$ per PDG
- Indistinguishable \rightarrow interference -> add amplitudes

The STAR Detector

UPC Triggering: ZDCs, TOF and BBC veto
UPC Reconstruction: TPC, TOF

Triggering

Triggering on low-multiplicity final states is hard for STAR

- Beam gas and cosmic-ray backgrounds

Use the presence of additional photon exchange (mutual Coulomb exchange) to 'tag' UPCs at low impact parameters

- Individual cross-sections factorize

$$
\sigma=\int d^{2} b P_{1}(b) P_{2}(b) \ldots
$$

- Require 1-5 neutrons in each zero degree calorimeter
- We lose some events with more neutrons
- Require low multiplicity in time-of-flight system, and veto events with hits in beam-beam counters
- 38 million triggers recorded in 2010 data

Neutron Spectrum

- A prominent 1n and smaller $2 n$ peaks are visible in the zero degree calorimeter ADC spectra
- 1n excitation occurs primarily via Giant Dipole Resonance excitation
- ZDC cut acceptance in number of neutrons is not well known
- Use 1n1n events for overall cross-section normalization
- the 1 n1n cross-section is well known

ADC Counts in West ZDC

Pion pair selection

Select well-reconstructed tracks

- 14 hits in TPC (our of 45 normally possible)
- Associated with a hit in the time-of-flight system
|Track pseudrapidity|< 1
Eliminates out-of-time tracks
- Specific dE/dx within 3σ of pion expectation
- Like sign pairs are a background measure, and are subtracted.
- Efficiency corrections done with STARlight Monte Carlo events embedded in zero-bias data.
- STARlight matches the kinematics for UPC photoproduction well.

STARlight: PRC C60, 014903 (1999)
\& PRL 84, 2330 (2000)

$\pi^{+} \pi^{-}$final state

384,000 reconstructed pairs with $\mathrm{p}_{\mathrm{T}}<100 \mathrm{MeV} / \mathrm{c}$
3 sources: ρ^{0}, ω^{0} (small B.R.), direct $\pi^{+} \pi^{-}$

- Indistinguishable-> add amplitudes in fit

$$
\frac{d \sigma}{d M_{\pi^{+} \pi^{-}}} \propto\left|A_{\rho} \frac{\sqrt{M_{\pi \pi} M_{\rho} \Gamma_{\rho}}}{M_{\pi \pi}^{2}-M_{\rho}^{2}+i M_{\rho} \Gamma_{\rho}}+B_{\pi \pi}+C_{\omega} e^{i \phi_{\omega}} \frac{\sqrt{M_{\pi \pi} M_{\omega} \Gamma_{\omega}}}{M_{\pi \pi}^{2}-M_{\omega}^{2}+i M_{\omega} \Gamma_{\omega}}\right|^{2}+f_{p}
$$

Fit parameters

- ρ^{0} mass and width
- ω mass and width
- ρ, ω and direct $\pi \pi$ amplitudes, and ω phase
- Quadratic polynomial for remaining backgrounds
${ }^{-}$N. b. remaining background is small; includes $\mathrm{e}^{+} \mathrm{e}^{-}$ pairs...
$\pi^{+} \pi^{-}$fit
320 bins, 2.5 MeV wide $\chi^{2} /$ DOF $=314 / 297$

Fit Parameter	value	units
M_{ρ}	0.7757 ± 0.0006	$\mathrm{GeV} / \mathrm{c}^{2}$
Γ_{ρ}	0.1475 ± 0.0014	$\mathrm{GeV} / \mathrm{c}^{2}$
A_{ρ}	1.511 ± 0.005	
$B_{\pi \pi}$	-1.176 ± 0.016	$\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{-1 / 2}$
C_{ω}	0.0626 ± 0.004	
M_{ω}	0.7838 ± 0.0009	$\mathrm{GeV} / \mathrm{c}^{2}$
Γ_{ω}	0.0163 ± 0.0017	$\mathrm{GeV} / \mathrm{c}^{2}$
ϕ_{ω}	1.73 ± 0.13	radians
$f_{p} p_{0}$	3.566 ± 0.304	
$f_{p} p_{1}$	-5.084 ± 0.53	
$f_{p} p_{2}$	1.743 ± 0.24	
	Statistical errors only	

Black: data points \& fit Solid blue: - ρ^{0}
Dotted blue: $\rho \%$ direct $\pi \pi$ interference Solid red: ω
Dotted red: ω / ρ interference

The ω is needed; χ^{2} quadruples without it!

Relative amplitudes: $\rho: \pi \pi$ and $\rho: \omega$ ratio

 $\rho: \pi \pi$ ratio is consistent with previous STAR \& ALICE results, \& also consistent with HERA results (on proton targets) $\rho: \omega$ ratio is consistent with measured $\gamma \pi->\omega$ cross-section, Glauber calculation, via STARlight) and measured (per PDG) $\operatorname{Br}\left(\omega->\pi^{+} \pi^{-}\right)=0.015 \pm 0.001$ \& with DESY fixed-target dataω phase $\neq 0$; is consistent with previous DESY results

STAR 2008: PRC 77, 034910 (2008) ALICE: JHEP 1509, 095 (2015) DESY-MIT: PRL 27, 888 (1971)

ρ^{0} rapidity distribution

Rapidity distribution is in good agreement with STARlight

- $1 n, 1 n$ cross-section is consistent with STARlight
- - 10\% below prediction

$$
<1 \sigma_{\text {syst }} .
$$

- XnXn cross-section is scaled from $1 n, 1 n$ using STARlight
- The distribution of the number of neutrons is not well known.

Bands show systematic $\quad \rho^{0}$ Rapidity uncertainties

d $\sigma / d t$

Coherent (over the entire nucleus) + incoherent (off a single nucleon) production both occur

- Incoherent -> often cause neutron emission or nuclear breakup

Because of trigger, cannot observe neutrons from nuclear breakup

- Find coherent spectrum by subtracting incoherent
Fit incoherent region, $|t|>0.2 \mathrm{GeV}^{2}$ region to a dipole form factor
- $\mathrm{F}(\mathrm{t})=\mathrm{A} /\left(\mathrm{Q}_{0}{ }^{2}+|\mathrm{t}|^{2}\right)$
- $\mathrm{Q}_{0}{ }^{2}=0.099 \mathrm{GeV}^{2}$

- Separate fits for $1 n, 1 n$ and $X n, X n$

Coherent production

Multiple diffraction dips visible

- Expected as nucleus approaches 'black disk'

Slightly washed out because of photon p_{T}

- Downturn for $|\mathrm{t}|<10^{-3} \mathrm{GeV}^{2}$ due to interference between the two production targets (nuclei)
- $\mathrm{S}=\left|\mathrm{A}_{1}-\mathrm{A}_{2} \exp ^{(\mathrm{ikb})}\right|^{2}$
- A_{1}, A_{2} are amplitudes for the two nuclear targets

4M20ing th the nucieus

Target (gluons?) density is the Fourier transform of d σ / dt

$$
F(b) \propto \frac{1}{2 \pi} \int_{0}^{\infty} d p_{T} p_{T} J_{0}\left(b p_{T}\right) \sqrt{\frac{d \sigma}{d t}}
$$

$|t|_{\text {max }}=0.06 \mathrm{GeV}^{2}$
2-d Fourier (Hanckel) tranform

- Targets, integrated over z

Blue band shows effect of varying $|t|_{\max }$ from 0.05-0.09 GeV^{2}

- Variation at small |b| may be due to windowing (finite t range)
Negative wings at large |b| are likely from interference

FWHM=2*(6.17 $\pm 0.12 \mathrm{fm})$

The high-mass region

2 years (2010+2011) data w/ slightly different cuts

- Cut $\left|y_{\pi \pi}\right|>0.04$ reduces cosmic-ray background
- Twice as much data total

The high-mass tail of the $\pi \pi$ mass distribution
Fit to exponential tail of ρ^{0}, flat background \& Gaussian peak

- Simple, provides good description w/ 6 parameters total

n.b. $\gamma \gamma->f_{2}(1270)->\pi \pi$ is not clearly visible

A high mass state

$\mathrm{N}=\mathrm{a} \exp ^{-(\mathrm{b}[\mathrm{Mpp}-1.2 \mathrm{GeV}])}+\mathrm{c}+\mathrm{d} \exp \left(-\left[\mathrm{M}_{\pi \pi}-\mathrm{M}_{\mathrm{X}}\right]^{2} / \sigma^{2}\right)$

- $\chi^{2 / D O F}=37.7 / 34$
- $\chi^{2} /$ DOF increases to 252/35 w/o X resonance
$M_{X}=1653 \pm 10 \mathrm{MeV}, \Gamma(\mathrm{X})=164+/-15 \mathrm{MeV}$ (stat. only)
$N\left(M_{X}\right)=1034 \pm 71$: 15σ significance (stat. only)

What is this state?

Heavier and much narrower than previous STAR, ALICE observations of $\pi \pi \pi \pi$ final state

- $\pi \pi \pi \pi$ was likely mixture of $\rho^{\prime}(1450)$ \& ρ^{\prime} (1700)
Heavier than the $\rho^{\prime}(1450)$
STAR $\pi \pi \pi \pi$ mass

~ lighter \& narrower than the $\rho^{\prime}(1700)$
- $\operatorname{Br}(\rho$ '(1700) -> $\pi \pi)$ likely small: "seen" Consistent w/ ρ_{3} (1690)
- $\mathrm{M}=1690$ \& $\Gamma=161 \mathrm{MeV}$
- $\operatorname{Br}\left(\rho_{3}->\pi^{+} \pi^{-}\right)=23.6 \pm 1.3 \%$
- $N\left(\rho_{3}\right) / B r\left(\rho^{0}\right) \sim \sim 1 / 750$
σ consistent w/ $\operatorname{Br}\left(\rho_{3}->\pi^{+} \pi^{-}\right)$\& previous

ALICE $\pi \pi \pi \pi$ mass
C. Mayer, 2014 CERN UPC wkshp γ p-> $\rho_{3}->\eta \pi^{+} \pi^{-}$data
$\gamma \mathrm{p} \rightarrow>\rho_{3} \rightarrow>\pi^{+} \pi-$ from OMEGA photon collaboration: Z Phys. C30, 531 (1986)

Conclusions

STAR has made a high-statistics study of photoproduced $\pi \pi$ in ultra-peripheral collisions.

- We observe the ρ, direct $\pi \pi$ and ω photoproduction.

The ω is observed through its interference with the ρ^{0}.
The ω amplitude is consistent with the measured ω photoproduction cross-section and branching ratio to $\pi^{+} \pi^{-}$.
The ω phase angle is non-zero, and consistent with previous studies.
We see 2 diffraction minima in d $\sigma / d t$ for ρ^{0} photoproduction

- By Fourier transforming the coherent portion of do/dt, we can 'image' the nucleus, forming a 2-dimensional picture of the photoproduction targets.
We observe an excited state with a mass of 1653 MeV and width of 164 MeV . The closest match in the particle data book is the $\rho_{3}(1690)$.
- The cross-section is consistent with a previous photoproduction measurement.

Bill Schmidke will present STAR J/ ψ photoproduction results this afternoon.

