Ultra-peripheral collisions in STAR New results from dipions

Spencer R. Klein, LBNL, for the STAR Collaboration

- UPC photoproduction
- The STAR detector
 - Trigger
- $\pi\pi$ around the ρ^0 mass
 - ρ , ω and direct $\pi\pi$ contributions
 - dσ/dt and nuclear tomography
- A high mass $\pi\pi$ state

Ultra-peripheral photonuclear collisions

- Heavy nuclei carry intense photon fields
 - Perpendicular E and B fields -> photons
 - Weizsacker-Williams method
 - Flux ~ $Z^2\alpha$

- Large cross-sections for photonuclear interactions
 - - Pomeron = absorptive part of cross-section = gluon ladder (BFKL)
 - Couples equally to protons and neutrons
 - Some photon-meson interactions, at lower photon energies
- Vector meson dominance predicts mostly J^{PC}=1⁻⁻ states
 - $\pi\pi$ final state can come from ρ, ω, direct $\pi\pi$ production or higher excitations
 - <mark>∽ Br(ω->π⁺π⁻) ~</mark> 1.5% per PDG

The STAR Detector

Time Projection Chamber Tracking, PID (dE/dx), vertexing multiplicity

Time-Of-Flight detector PID (time-of-flight)

Beam-Beam Counter Min-bias trigger

Magnet

Zero Degree Calorimeters (18 m upstream & downstream)

UPC Triggering: ZDCs, TOF and BBC veto UPC Reconstruction: TPC, TOF

Triggering

 Triggering on low-multiplicity final states is hard for STAR

- Beam gas and cosmic-ray backgrounds
- Use the presence of additional photon exchange (mutual Coulomb exchange) to 'tag' UPCs at low impact parameters
 - Individual cross-sections factorize

$$\sigma = \int d^2 b P_1(b) P_2(b) \dots$$

- Require 1-5 neutrons in each zero degree calorimeter
 - We lose some events with more neutrons
- Require low multiplicity in time-of-flight system, and veto events with hits in beam-beam counters
- 38 million triggers recorded in 2010 data

Neutron Spectrum

- A prominent 1n and smaller 2n peaks are visible in the zero degree calorimeter ADC spectra
 - In excitation occurs primarily via Giant Dipole Resonance excitation
 - ZDC cut acceptance in number of neutrons is not well known
- Use 1n1n events for overall cross-section normalization
 - the 1n1n cross-section is well known

ADC Counts in West ZDC

Pion pair selection

- Select well-reconstructed tracks
 - ♦ 14 hits in TPC (our of 45 normally possible)
 - Associated with a hit in the time-of-flight system
 - Track pseudrapidity < 1</p>
 - Eliminates out-of-time tracks
 - Specific dE/dx within 3σ of pion expectation
- Like sign pairs are a background measure, and are subtracted.
- Efficiency corrections done with STARlight Monte Carlo events embedded in zero-bias data.
 - STARlight matches the kinematics for UPC photoproduction well.

STARlight: PRC C60, 014903 (1999) & PRL 84, 2330 (2000)

$\pi^+\pi^-$ final state

- 384,000 reconstructed pairs with p_T < 100 MeV/c</p>
- **3 sources:** ρ^0 , ω^0 (small B.R.), direct $\pi^+\pi^-$
 - Indistinguishable-> add amplitudes in fit

$$\frac{d\sigma}{dM_{\pi^{+}\pi^{-}}} \propto \left| A_{\rho} \frac{\sqrt{M_{\pi\pi}M_{\rho}\Gamma_{\rho}}}{M_{\pi\pi}^{2} - M_{\rho}^{2} + iM_{\rho}\Gamma_{\rho}} + B_{\pi\pi} + C_{\omega}e^{i\phi_{\omega}} \frac{\sqrt{M_{\pi\pi}M_{\omega}\Gamma_{\omega}}}{M_{\pi\pi}^{2} - M_{\omega}^{2} + iM_{\omega}\Gamma_{\omega}} \right|^{2} + f_{p}$$

- Fit parameters
 - ρ^0 mass and width
 - ω mass and width
 width
 - ρ, ω and direct $\pi\pi$ amplitudes, and ω phase
 - Quadratic polynomial for remaining backgrounds
 - N. b. remaining background is small; includes e⁺e⁻ pairs...

Relative amplitudes: ρ : $\pi\pi$ and ρ : ω ratio

- ρ:ππ ratio is consistent with previous STAR & ALICE results,
 & also consistent with HERA results (on proton targets)
- $\rho:\omega$ ratio is consistent with measured $\gamma\pi$ -> ω p cross-section, Glauber calculation, via STARlight) and measured (per PDG) Br(ω -> $\pi^+\pi^-$)=0.015 ± 0.001 & with DESY fixed-target data
- ω phase \neq 0; is consistent with previous DESY results

STAR 2008: PRC 77, 034910 (2008) ALICE: JHEP 1509, 095 (2015) DESY-MIT: PRL 27, 888 (1971)

ρ^0 rapidity distribution

- Rapidity distribution is in good agreement with STARlight
- 1n,1n cross-section is consistent with STARlight
 - ~10% below prediction
 - σ < 1σ_{syst}.
- XnXn cross-section is scaled from 1n,1n using STARlight
 - The distribution of the number of neutrons is not well known.

d<mark>∕</mark>/dt

- Coherent (over the entire nucleus) + incoherent (off a single nucleon) production both occur
 - Incoherent -> often cause neutron emission or nuclear breakup
 - Because of trigger, cannot observe neutrons from nuclear breakup
 - Find coherent spectrum by subtracting incoherent
- Fit incoherent region, |t|>0.2 GeV² region to a dipole form factor
 - $F(t) = A/(Q_0^2 + |t|^2)$

• $Q_0^2 = 0.099 \text{ GeV}^2$

Separate fits for 1n,1n and Xn,Xn

Coherent production

- Multiple diffraction dips visible
 - Expected as nucleus approaches 'black disk'
 - Slightly washed out because of photon p_T
- Downturn for |t|<10⁻³ GeV² due to interference between the two production targets (nuclei)
 - $\bullet S = |A_1 A_2 exp^{(ikb)}|^2$
 - A₁, A₂ are amplitudes for the two nuclear targets

"Imaging" the nucleus

- Target (gluons?) density is the Fourier transform of dσ/dt
- |t|_{max} = 0.06 GeV²
- 2-d Fourier (Hanckel) tranform
 - Targets, integrated over z
- Blue band shows effect of varying |t|_{max} from 0.05 - 0.09 GeV²
 - Variation at small |b| may be due to windowing (finite t range)
- Negative wings at large |b| are likely from interference
- FWHM=2*(6.17±0.12 fm)

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$

The high-mass region

- 2 years (2010+2011) data w/ slightly different cuts
 - Cut $|y_{\pi\pi}|$ > 0.04 reduces cosmic-ray background
 - Twice as much data total
- The high-mass tail of the $\pi\pi$ mass distribution
- Fit to exponential tail of ρ^0 , flat background & Gaussian peak
 - Simple, provides good description w/ 6 parameters total

n.b. $\gamma\gamma -> f_2(1270) -> \pi\pi$ is not clearly visible

A high mass state

- $N = a^* exp^{-(b[Mpp-1.2 \text{ GeV}])} + c + d exp(-[M_{\pi\pi} M_X]^2/\sigma^2)$
 - ♦ χ²/DOF= 37.7/34
 - χ^2 /DOF increases to 252/35 w/o X resonance
- M_X = 1653 ± 10 MeV, Γ(X)=164+/- 15 MeV (stat. only)
- $N(M_X)=1034 \pm 71$: 15 σ significance (stat. only)

What is this state?

- Heavier and much narrower than previous STAR, ALICE observations of ππππ final state
 - ππππ was likely mixture of ρ'(1450)
 & ρ' (1700)
- Heavier than the ρ '(1450)
- ~ lighter & narrower than the ρ'(1700)
 & Br (ρ'(1700) -> ππ) likely small: "seen"
- Consistent w/ ρ₃ (1690)
 - ♦ M= 1690 & Γ= 161 MeV
 - Br($\rho_3 \rightarrow \pi^+\pi^-$) = 23.6 ± 1.3 %
 - ♦ N(ρ₃)/Br(ρ⁰) ~~ 1/750
 - consistent w/ Br(ρ₃->π⁺π⁻) & previous γp-> ρ₃ -> ηπ⁺π⁻ data

STAR ππππ mass PRC81, 044901 (2010)

C. Mayer, 2014 CERN UPC wkshp

Conclusions

- STAR has made a high-statistics study of photoproduced $\pi\pi$ in ultra-peripheral collisions.
 - We observe the ρ , direct $\pi\pi$ and ω photoproduction.
 - The ω is observed through its interference with the ρ^0 .
 - The ω amplitude is consistent with the measured ω photoproduction cross-section and branching ratio to $\pi^+\pi^-$.
 - The ω phase angle is non-zero, and consistent with previous studies.
- We see 2 diffraction minima in $d\sigma/dt$ for ρ^0 photoproduction
 - ♦ By Fourier transforming the coherent portion of do/dt, we can 'image' the nucleus, forming a 2-dimensional picture of the photoproduction targets.
- We observe an excited state with a mass of 1653 MeV and width of 164 MeV. The closest match in the particle data book is the ρ₃(1690).
 - The cross-section is consistent with a previous photoproduction measurement.

Bill Schmidke will present STAR J/ ψ photoproduction results this afternoon.