# Resummations in PDF fits

#### Marco Bonvini

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

#### DIS 2016, DESY Hamburg, 13 April 2016

Related to work with the NNPDF collaboration







Single (double) logarithmic enhancements

 $\alpha_s^k \log^j \qquad 0 \leq j \leq (2)k$ 

lf/when

 $\alpha_s \log^{(2)} \sim 1$ 

all such terms in the perturbative series are equally important:

#### all-order RESUMMATION

Goals of resummations in PDF fits:

- provide PDFs consistent with resummed computations
- improve the quality of PDF fits



Large-x threshold resummation:

•  $x \to 1$ 

- due to soft gluon emissions
- resums double logs  $\left(\frac{\log^k(1-x)}{1-x}\right)_+$
- in Mellin space,  $\log N$  at  $N \to \infty$
- [MB,Marzani,Rojo,Rottoli,Ubiali,Ball,Bertone, Carrazza,Hartland 1507.01006]

Small-x high-energy (BFKL) resummation

•  $x \to 0$ 

- due to high-energy gluon emissions
- resums single logs  $\frac{1}{x} \log^k x$
- in Mellin space, poles 1/(N-1) in the limit  $N \to 1$
- [MB,Marzani,Peraro,NNPDF (in preparation)]



| Observable: | $\sigma = \sigma_0 C(\alpha_s(\mu)) \otimes f(\mu) [\otimes f(\mu)]$ |
|-------------|----------------------------------------------------------------------|
| Evolution:  | $\mu^2 \frac{d}{d\mu^2} f(\mu) = P(\alpha_s(\mu)) \otimes f(\mu)$    |

Any object with a perturbative expansion and a log enhancement:

- coefficient functions  $C(\alpha_s(\mu))$  (observable)
- splitting functions  $P(\alpha_s(\mu))$  (evolution)

|            | observable                             | evolution                              |  |
|------------|----------------------------------------|----------------------------------------|--|
|            | coefficient functions $C(lpha_s(\mu))$ | splitting functions $P(\alpha_s(\mu))$ |  |
| large-x    | (N)NNLL                                | _                                      |  |
| small- $x$ | LLx                                    | NLL×                                   |  |

Dressing the Born with soft gluon emissions leads to double log enhancement

$$C(N) = C_{\rm LO}(N) \left[ 1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=0}^{2n} c_{nk} \log^k N \right] \times \left[ 1 + \mathcal{O}\left(\frac{1}{N}\right) \right]$$

Known to N<sup>3</sup>LL for DIS, DY, Higgs:  $k = 2n, 2n - 1, \dots, 2n - 6$ and to NNLL for many others:  $k = 2n, 2n - 1, \dots, 2n - 4$ 

Well known formalism, can be derived in several ways (diagrammatic approach, factorisation methods, path-integral approach, SCET)

$$\frac{C(N)}{C_{\rm LO}(N)} = g_0(\alpha_s) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \alpha_s^2 g_4(\alpha_s L) + \dots\right]$$
$$L = \log N$$

Available for

- total cross sections  $\sigma$
- invariant mass distributions  $d\sigma/dM^2$
- double-differential invariant mass + rapidity distributions  $d\sigma/dM^2/dY$

# Processes in a global (NNPDF) PDF fits

| Process       | observable                            | resummation available |  |
|---------------|---------------------------------------|-----------------------|--|
| DIS           | $d\sigma/dx/dQ^2$ (NC, CC, charm,)    | YES                   |  |
| DY $Z/\gamma$ | $d\sigma/dM^2/dY$                     | YES                   |  |
| DY $W$        | differential in the lepton kinematics | NO                    |  |
| $t\bar{t}$    | total $\sigma$                        | YES                   |  |
| jets          | inclusive $d\sigma/dp_t/dY$           | YES/NO                |  |

Including DY W requires threshold resummation at fully differential level: not available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that NLL is very poor: we excluded them

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms) www.ge.infn.it/~bonvini/troll

 $t\bar{t}$  available from top++

www.alexandermitov.com/software

#### Effects on the theory predictions



E866 Drell-Yan



CDF Z Rapidity



1.5 NLO+NLL Khadr (N)NLO+(N)NLL (/ KNNLO ) NNLO+NNLL ×. 1.4 1.3 ° . Þ e....e 1.2 ۰. 1.1 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 DY rapidity

BCDMS F<sub>2</sub> Proton

**CHORUS Neutrino DIS** 

# Impact on PDF fits: PDFs



# Impact on PDF fits: luminosities



LHC 13 TeV, NNPDF3.0 DIS+DY+Top, α<sub>s</sub>(M\_)=0.118

| Experiment         | NNPDF3.0 DIS+DY+top |       |         |           |
|--------------------|---------------------|-------|---------|-----------|
|                    | NLO                 | NNLO  | NLO+NLL | NNLO+NNLL |
| NMC                | 1.39                | 1.34  | 1.36    | 1.30      |
| SLAC               | 1.17                | 0.91  | 1.02    | 0.92      |
| BCDMS              | 1.20                | 1.25  | 1.23    | 1.28      |
| CHORUS             | 1.13                | 1.11  | 1.10    | 1.09      |
| NuTeV              | 0.52                | 0.52  | 0.54    | 0.44      |
| HERA-I             | 1.05                | 1.06  | 1.06    | 1.06      |
| ZEUS HERA-II       | 1.42                | 1.46  | 1.45    | 1.48      |
| H1 HERA-II         | 1.70                | 1.79  | 1.70    | 1.78      |
| HERA charm         | 1.26                | 1.28  | 1.30    | 1.28      |
| DY E866            | 1.08                | 1.39  | 1.68    | 1.68      |
| DY E605            | 0.92                | 1.14  | 1.12    | 1.21      |
| CDF Z rap          | 1.21                | 1.38  | 1.10    | 1.33      |
| D0 Z rap           | 0.57                | 0.62  | 0.67    | 0.66      |
| ATLAS Z 2010       | 0.98                | 1.21  | 1.02    | 1.28      |
| ATLAS high-mass DY | 1.85                | 1.27  | 1.59    | 1.21      |
| CMS 2D DY 2011     | 1.22                | 1.39  | 1.22    | 1.41      |
| LHCb $Z$ rapidity  | 0.83                | 1.30  | 0.51    | 1.25      |
| ATLAS CMS top prod | 1.23                | 0.55  | 0.61    | 0.40      |
| Total              | 1.233               | 1.264 | 1.246   | 1.269     |

Resummed  $\chi^2$  slightly worse DY fixed-target experiment are the origin of the problem

## Impact on phenomenology



SUSY particles:

[Beenakker,Borschensky,Krämer,Kulesza,Laenen,Marzani,Rojo 1510.00375]



Small-x resummation based on  $k_t$ -factorization

Affects both evolution (known to LLx and NLLx) and coefficient functions (known only at lowest logarithmic order, which is often NLLx)

We follow the ABF [Altarelli,Ball,Forte 1995,...,2008] procedure to resum splitting functions and coefficient functions [MB,Marzani,Peraro (work in progress)]

We are preparing a public code HELL: High-Energy Large Logarithms

which will deliver resummed splitting functions and coefficient functions.

The resummed evolution from HELL has been already successfully interfaced to
APFEL [see Valerio's talk]

We performed a first NLO+NLLx fit with resummed evolution only

Next step: include resummed coefficient function for a fully consistent fit



#### Small-x resummation: preliminary results

Take  $f(x, Q_0 = 2 \text{GeV})$  as an input

Evolve it to Q = 100 GeV with either NLO or NLO+NLLx evolution (using APFEL)

Plot the ratio  $\rightarrow$ 

Refit PDFs including resummed NLO+NLLx evolution

Plot the ratio to NLO PDFs  $\rightarrow$ 

Including resummed coefficient functions will likely compensate some of the effect



#### Conclusions

PDF fit with threshold resummation

- DIS + DY  $(Z/\gamma) + t\bar{t} \checkmark$
- Sizeable effect at NLO+NLL, small effect at NNLO+NNLL
- To be done:
  - include missing processes (DY *W*, jets)
  - understand (or exclude?) fixed-target DY
  - consider other choices for resummation (different subleading terms)

```
[MB,Marzani 1405.3654]
```

PDF fit with high-energy resummation

- NLO+NLLx evolution  $\checkmark$
- resummed coefficient functions: work in progress
- preliminary results: very promising

Future:

- PDF fit with joint (threshold + high-energy) resummation ?
- other soft resummations?

# Backup slides

## Reduced dataset



# Threshold resummation in DIS

TROLL delivers  $\Delta_j K_{N^n LL}$  to be used as  $\sigma_{res} = \sigma_{N^j LO} + \sigma_{LO} \times \Delta_j K_{N^n LL}$ 



Marco Bonvini

Resummations in PDF fits

#### Threshold resummation in Drell-Yan



$$\frac{C(N)}{C_{\rm LO}(N)} = g_0(\alpha_s) \exp\left[\frac{1}{\alpha_s}g_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right] \times \left[1 + \mathcal{O}\left(\frac{1}{N}\right)\right]$$

*N*-soft: standard resummation consider in our fit, neglects all 1/N terms

 $\psi$ -soft: improved resummation, includes some 1/N terms

 $\psi$ -soft is more predictive than N-soft [MB, Marzani 1405.3654] [MB,Marzani,Muselli,Rottoli 1603.08000]

Marco Bonvini



#### Small-*x* resummation: brief overview

DGLAP:  

$$\mu^{2} \frac{d}{d\mu^{2}} f(x,\mu^{2}) = \int \frac{dz}{z} P\left(\frac{x}{z}, \alpha_{s}(\mu^{2})\right) f(z,\mu^{2})$$
BFKL:  

$$x \frac{d}{dx} f(x,\mu^{2}) = \int \frac{d\nu^{2}}{\nu^{2}} K\left(x, \frac{\mu^{2}}{\nu^{2}}, \alpha_{s}(\cdot)\right) f(x,\nu^{2})$$

double Mellin transform  $f(N, M) = \int dx \, x^N \int \frac{d\mu^2}{\mu^2} \left(\frac{\mu^2}{\mu_0^2}\right)^{-M} f(x, \mu^2)$ 

DGLAP:
$$Mf(N,M) = \gamma(N,\alpha_s(\cdot))f(N,M) + \text{boundary}$$
BFKL : $Nf(N,M) = \chi(M,\alpha_s(\cdot))f(N,M) + \text{boundary}$ 

When both are valid (small x, large  $\mu^2$ ), consistency between the solutions gives (at fixed coupling)

$$\chi(\gamma(N, \alpha_s), \alpha_s) = I$$

duality relation

For  $\chi(M, \alpha_s) = \alpha_s \chi_0(M)$ the dual  $\gamma$  contains all orders in  $\alpha_s/N$ 



# Small-x resummation: brief overview

What do we get?

- LL: strong growth at small x (not observed)
- NLL: no enhancement at small x (!!)

Totally unstable,

due to perturbative instability of the BFKL kernel

ABF solution [Altarelli,Ball,Forte 1995,...,2008]

- use duality to resum BFKL kernel
- exploit symmetry M 
  ightarrow 1-M of  $\chi$
- impose momentum conservation





reuse duality to get resummed anomalous dimensions

The result is perturbatively stable!

Finally

 resum running coupling contributions (changes the nature of the small-N singularity: branch-cut to pole)

#### High-energy $(k_T)$ factorization:

$$\sigma \propto \int \frac{dz}{z} \int d^2 \mathbf{k} \ \hat{\sigma}_g \left( \frac{x}{z}, \frac{Q^2}{\mathbf{k}^2}, \alpha_s(Q^2) \right) \mathcal{F}_g(z, \mathbf{k}) \qquad \begin{cases} \mathcal{F}_g(x, \mathbf{k}) : \text{unintegrated PDF} \\ \hat{\sigma}_g \left( z, \frac{Q^2}{\mathbf{k}^2}, \alpha_s \right) : \text{off-shell xs} \end{cases}$$

Defining

$$\mathcal{F}_g(N, \boldsymbol{k}) = U\left(N, \frac{\boldsymbol{k}^2}{\mu^2}\right) f_g(N, \mu^2)$$

we get

$$C_g(N, \alpha_s) = \int d^2 k \ \hat{\sigma}_g \left( N, \frac{Q^2}{k^2}, \alpha_s \right) U \left( N, \frac{k^2}{\mu^2} \right)$$

At LL accuracy, U has a simple form, in terms of small-x resummed anom dim  $\gamma$ 

$$U\left(N,\frac{k^2}{\mu^2}\right) \approx k^2 \frac{d}{dk^2} \exp \int_{\mu^2}^{k^2} \frac{d\nu^2}{\nu^2} \gamma(N,\alpha_s(\nu^2))$$

- Only known at LL
- $\bullet$  Just uses the off-shell cross sections  $\hat{\sigma}(N,Q^2/{\pmb k}^2,\alpha_s)$  (one for each proc)
- Can be included directly in HELL

#### Resummation in the evolution: large x

Singlet diagonal  $(P_{qq}, P_{gg})$  and non-singlet  $(P_{ns}^{\pm})$ :

$$P(x,\alpha_s) = \frac{A(\alpha_s)}{(1-x)_+} + B(\alpha_s)\delta(1-x) + C(\alpha_s)\log(1-x) + \dots$$
$$\gamma(N,\alpha_s) = -A(\alpha_s)\log N + [B(\alpha_s) - \gamma A(\alpha_s)] - C(\alpha_s)\frac{\log N}{N} + \dots$$

no log enhancement!

Singlet off-diagonal ( $P_{qg}$ ,  $P_{gq}$ ):

$$P(x,\alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[ \sum_{k=0}^{2n} d_{nk} \log^k (1-x) + \dots \right]$$
$$\gamma(N,\alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[ \sum_{k=0}^{2n} \tilde{d}_{nk} \frac{\log^k N}{N} + \dots \right]$$

Double log enhancement of the next-to-soft (NS) contributions[Vogt 1005.1606]Can be resummed up to NNLL (k = 0, 1, 2)[Almasy,Soar,Vogt 1012.3352]Expected effect: negligible[Almasy,Soar,Vogt 1012.3352]

#### Resummation in the evolution: small x

Singlet:

$$P(x, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[ \sum_{k=0}^n a_{nk} \frac{\log^k x}{x} + \sum_{k=0}^{2n} b_{nk} \log^{2k} x + \dots \right]$$
$$\gamma(N, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[ \sum_{k=0}^n \frac{a_{nk}}{(N-1)^{k+1}} + \sum_{k=0}^{2n} \frac{b_{nk}}{N^{k+1}} + \dots \right]$$

Single log enhancement at leading small x, in the singlet sector

$$P_{\text{singlet}} = \left(\begin{array}{cc} P_{gg} & P_{gq} \\ P_{qg} & P_{qq} \end{array}\right) = \left(\begin{array}{cc} \text{LL} & \text{LL} \\ \text{NLL} & \text{NLL} \end{array}\right)$$

Non-singlet:

$$P(x, \alpha_s) = \sum_{n=0}^{\infty} \alpha_s^{n+1} \left[ \sum_{k=0}^{2n} b_{nk} \log^k x + \dots \right]$$

is double log enhanced but subleading.