

Top quark mass measurements with the CMS experiment

Simon Spannagel on behalf of the CMS Collaboration

DIS 2016, Hamburg WG4 Heavy Flavors, 13 April 2016

Why Measuring the Top Quark Mass?

- ${\ensuremath{\, \rm o}\,} \ m_{\rm t}$ is a fundamental parameter of the standard model
- $\, \circ \,$ Short lifetime $\mathcal{O}({10}^{-25})s \rightarrow$ no hadronization, allows to study bare quark properties
- Direct access to top quark properties through decay products

Overview

- $\circ\,$ Many top quark mass measurements published by CMS \rightarrow CMS Top Quark Public Results
- Focus on selected measurements only, presenting the most precise results available

Direct m_{t} Measurement: All-hadronic

arXiv:1509.04044

- Largest branching ratio
- Full reconstruction possible (no neutrinos)
- Combinatorics: many possible jet-parton assignments
- Multi-jet background requires tight cuts

- Ideogram method: per-event likelihoods (taking into account expected contributions from correct/wrong and background hypothesis) are combined to perform the measurement
- 1D: determine m_{t} from templates
- **2D**: determine $m_{\rm t}$ and global JSF simultaneously, no JSF prior used
- Hybrid: use Gaussian constraint, width JEC uncertainty
- Observables:

 $m_{\rm F}^{fit}$ from kinematic fit

' reconstructed from jet pair invariant mass m_{W}

Direct $m_{\rm t}$ Measurement: All-hadronic

arXiv:1509.04044

- Perform kinematic reconstruction of $t\bar{t}$ system
- Choose jet-parton assignment which fits best to $t\bar{t}$ hypothesis (χ^2)
- For 2D ideogram: combine stat. uncertainty from both components

Dominant Sources of Uncertainty

b-Dependent JEC	0.2%	$\Delta m_{\mathrm{t}} = \pm$ 0.29 GeV
Data Statistics	0.1%	$\Delta m_{\rm t}=\pm 0.25{\rm GeV}$
Backgrounds	0.1%	$\Delta m_{\rm t}=\pm 0.20{\rm GeV}$
In-Situ JEC	0.1%	$\Delta m_{ m t}=\pm$ 0.19 GeV

$$\begin{split} m_{\rm t}^{1D} &= 172.46 \pm 0.23 \, {\rm (stat)} \, \pm 0.62 \, {\rm (syst)} \, {\rm GeV} \\ m_{\rm t}^{hyb} &= 172.32 \pm 0.25 \, {\rm (stat+JSF)} \, \pm 0.59 \, {\rm (syst)} \, {\rm GeV} \end{split}$$

Direct m_t Measurement: ℓ +Jets

- Relatively large branching ratio, modest cuts required
- Event identification via leptonic top Full reconstruction of the hadronic top
- Combinatorics remain issue, typically ≥ 4 jets
- Simulated events classified in correct/wrong/unmatched permutation:

Direct m_t Measurement: ℓ +Jets

- ${\,\circ\,}$ Use additional event weight: goodness-of-fit probability $P_{\rm gof}$ from kin. reconstruction
- Reduces impact of events with wrong jet assignment

$$\begin{split} m_{\rm t}^{1D} &= 172.56 \pm 0.12 \, ({\rm stat}) \pm 0.62 \, ({\rm syst}) \, {\rm GeV} \\ m_{\rm t}^{hyb} &= 172.35 \pm 0.16 \, ({\rm stat+JSF}) \pm 0.48 \, ({\rm syst}) \, {\rm GeV} \end{split}$$

Direct m_t Measurement: Dilepton

- Low backgrounds, typically only a few percent
- Simplified combinatorics: 2 lepton/b-jet permutations
- Full event reconstruction impossible due to 2 neutrinos
- Lower $m_{\rm t}$ sensitivity due to neutrino energy

- Analytical matrix weighting technique (AMWT)
- Comparable with 1D ideogram
- ${\scriptstyle \bullet}\,$ Scan $m_{\rm t}\,$ from 100 to 400 GeV
- \bullet Calculate probability of observing a charged lepton of energy E in rest frame of a top quark of mass $m_{\rm t}$
- Assign weights using probability
- $\bullet~$ Observable is mass with highest average sum weight: $m_{\rm t}^{AMWT}$

Direct m_t Measurement: Dilepton

arXiv:1509.04044

 $\, \circ \,$ Measure mass by comparison to several t \bar{t} MC simulations with different m_t hypotheses

$m_{\rm t} = 172.82 \pm 0.19 \,({\rm stat}) \, \pm 1.22 \,({\rm syst}) \,{\rm GeV}$

Combination of the Measurements

arXiv:1509.04044

- Latest combination of measurement by the CMS experiment
- Results from 2010, 2011, and 2012
- Using BLUE method
- Takes correlation between measurements into account

Most precise combination

- Legacy results from 2010, 2011
- 2012: All-hadronic (hybrid), *l*+jets (hybrid), Dileptonic (AMWT)

 $m_{\rm t} = 172.44 \pm 0.13 \,({\rm stat+JSF})$ $\pm 0.47 \,({\rm syst}) \,{\rm GeV}$

 $Precision < 0.3\,\%$

Differential Measurements

$m_{\rm t}$ as Function of Kinematic Observables

- $\, \bullet \,$ Measure $m_{\rm t}$ differentially as a function of kinematic variables
- Search for possible biases, potential limitations of current event generators
- Apply hybrid ideogram method to subset of events binned by observable
- ${\ \, \bullet \ \, m_{\rm t}}$ as a function of $p_T^{\rm t,had}$
- ${\scriptstyle \bullet}$ Description of top quark p_T in MC

- *m*_t as a function of *m*_{tt}
- Testing scale of the process

Top Quark Mass from Charged Particles

Aim

3

GeV

σ

Events / 3. 1400

1600

1200

1000

800

600

400

200

- Reduce dependence on detector calibration (e.g. jet energy corrections)
- Use particle tracks only, no need to reconstruct top
- Observable m_{svl} : invariant mass of lepton and secondary vertex (b quark decay)
- 5 channels: dilepton, ℓ +jets

eu channel, 3 tracks

SV track multiplicities of 3, 4, 5: suppress background

2

Gev

3.9 1000

Events /

800

600

400

200

 All possible combinations of leptons and secondary vertices taken into account

170 175 180 m, [GeV]

Background

m_{svl} [GeV]

Data

20 40 60 80 100120140160180200

Single t

arxiv:1603.06536

Data

Single t

CMS 19.7 fb⁻¹ (8 TeV)

eu channel, 4 tracks

Top Quark Mass from Charged Particles

arxiv:1603.06536

- Fit observed m_{svl} distributions in each category with six components: tt correct/wrong/unmatched, single-t correct/unmatched, background
- Top mass determined via maximum combined likelihood of all channels

S. Spannagel

Indirect Measurement: Pole Mass from $\sigma_{t\bar{t}}$

arxiv:1603.02303

- \bullet Measurement from the mass dependence of the inclusive $t\bar{t}$ cross section
- Provides direct access to top quark pole mass
- $\bullet\,$ Measurement relies on choice of PDF set and α_s
- $\bullet~$ Cross section determined using NNPDF3.0, $\alpha_s=0.118\pm0.001$
- Combination of measurements at $\sqrt{s} = 7 \text{ TeV}$ and 8 TeV

$$m_{\rm t}^{\rm pole} = 173.8^{+1.7}_{-1.8} \,{\rm GeV}$$

 $\bullet\,$ For details on the inclusive $t\bar{t}$ production cross section measurement see talk by N. Bartosik

Summary and Outlook

- Top quark mass is an important parameter to the Standard Model
- Large t $\bar{\rm t}$ production cross section @ LHC allow precision measurements of $m_{\rm t}$
- $\, \bullet \,$ Latest results provide $m_{\rm t}$ (MC) with a precision of 0.3 %
- Dominating uncertainties are JEC and modeling uncertainties
- Measurements reached precision which allows to distinguish between different mass schemes (MC mass vs pole mass)
- $\,$ $\,$ Planned measurements of $m_{\rm t}$ at $\sqrt{s}=$ 13 TeV $\,$
- Explore alternative methods, e.g. $m_{\rm t}^{\rm pole}$ from t ${ar t}+{
 m jet}$

