Statistical Fragmentation in pp & ep Collisions

Karoly Urmossy ^{1,3}, Zhangbu Xu ², T. S. Biró ³, G. G. Barnaföldi ³, G. Bíró ³, Sz. Harangoró ³

1,

BROOKHMVEN
NATIONAL LABORATORY
Phys. Depat., BNL, USA

DIS2016

April 2016, DESY, Hamburg Germany

Motivation

- <u>Goal</u>
 Hadronisation of off-shell partons
- Proposed model
 Statistical Model
- Suggestion
 It might be more suitable to
 characterise JETs with their MASS
 instead of thier P or E

Outline

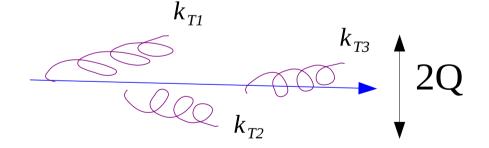
- <u>3D Statistical Jet fragmentation model</u> hadron distributions in jets in e⁺e⁻, ep, pp collisions
- **Applications**
 - Transverse momentum spectra in pp collisions from a pQCD parton model calculation
 - Spectra & anisotropy of hadrons in heavy-ion collisions

Q² Scale of the jet

parton branching

DGLAP for Fragmentation Functions goes with Q^2

$$k_{Ti}^2 = k_{i \mu} k_i^{\mu} \leq Q^2$$



Hadrons in the jet

Energy-momentum conservation

$$\sum_{h} p_{h}^{\mu} = P_{JET}^{\mu}$$

$$P_{JET}^{\mu} P_{\mu JET} = M_{JET}^{2}$$

$$M$$

$$E$$

$$Q \sim M_{JET}/2$$

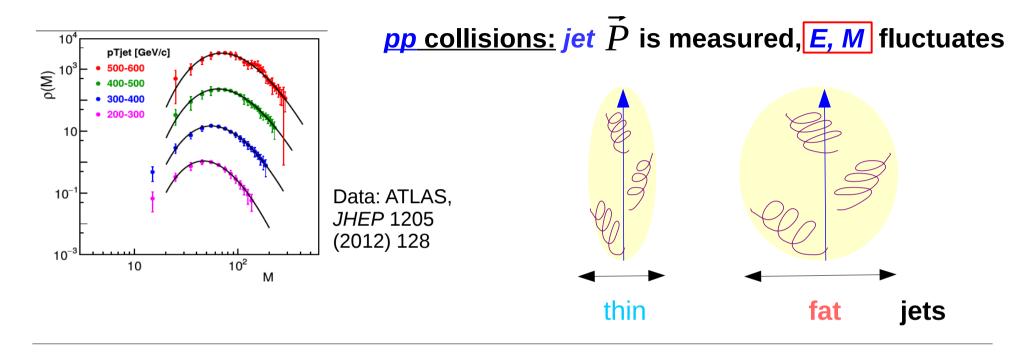
• Suggestion

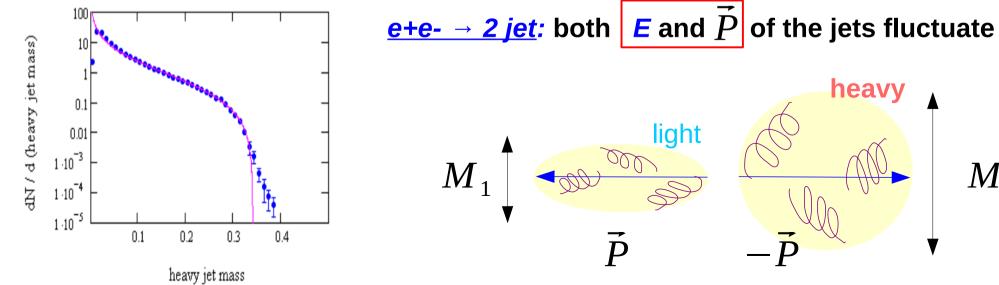
It might be more suitable to

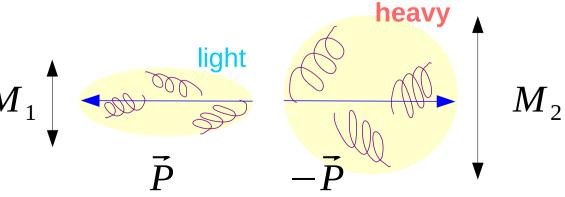
characterise JETs with their MASS

instead of thier P or E

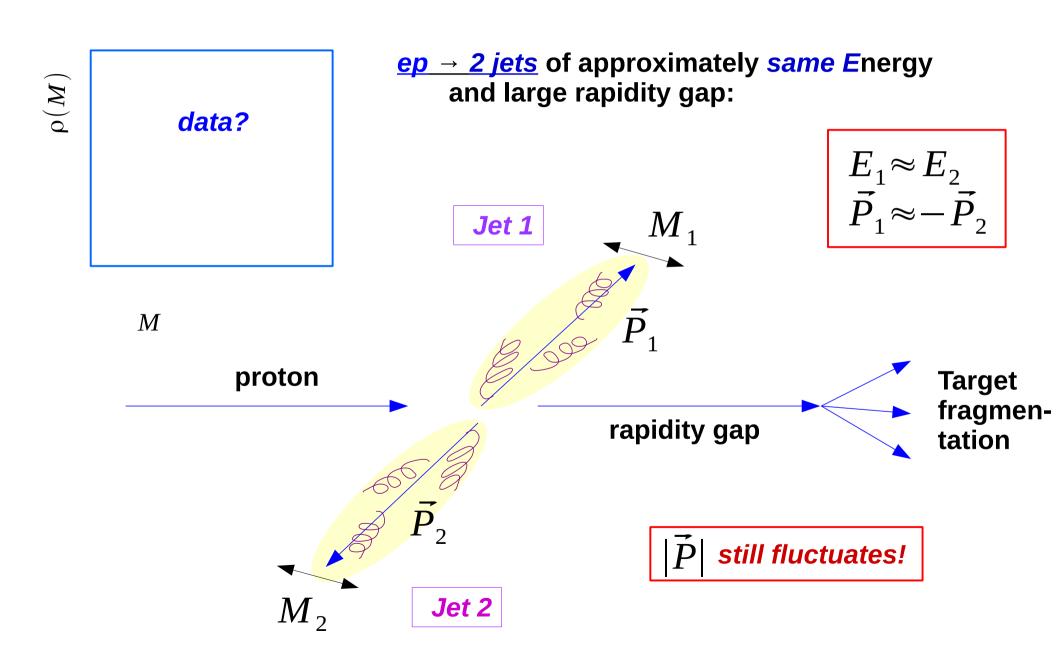
Problems







Problems



Statistical Fragmentation

Statistical jet-fragmentation

The cross-section of the creation of hadrons h_1, \ldots, h_N in a jet of N hadrons

$$d \sigma^{h_1,...,h_N} = |M|^2 \delta^{(4)} \left(\sum_{i} p_{h_i}^{\mu} - P_{tot}^{\mu} \right) d \Omega_{h_1,...,h_N}$$

If $|M| \approx constans$, we arrive at a microcanonical ensemble:

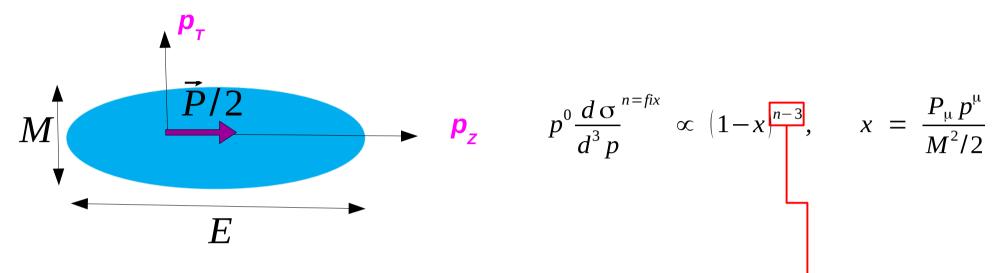
$$d \sigma^{h_1,\ldots,h_n} \sim \delta \left(\sum_i p_{h_i}^{\mu} - P_{tot}^{\mu} \right) d \Omega_{h_1,\ldots,h_n} \propto (P_{\mu} P^{\mu})^{n-2} = M^{2n-4}$$

Thus, the haron distribution in a jet of n hadron is

$$p^{0} \frac{d \sigma^{n=fix}}{d^{3} p} \propto \frac{\Omega_{n-1}(P_{\mu}-p_{\mu})}{\Omega_{n}(P_{\mu})} \propto (1-x)^{n-3}, \qquad x = \frac{P_{\mu} p^{\mu}}{M^{2}/2}$$

Energy of the hadron in the co-moving frame

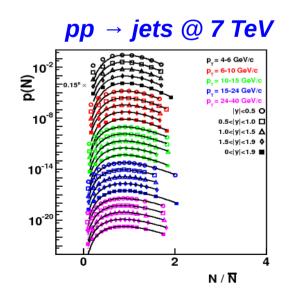
The haron distribution in a jet of n hadron with total momentum P

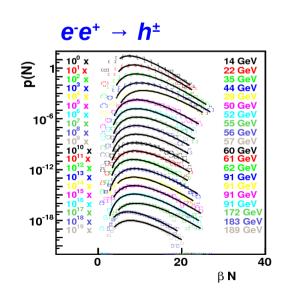


Problems

• The *hadron multiplicity* in a jet *fluctuates*

$$P(n) = {n+r-1 \choose r-1} \tilde{p}^n (1-\tilde{p})^r$$





Refs.:

Urmossy et.al.,*PLB*, **701**: 111-116 (2011)

Urmossy et. al., *PLB*, **718**, 125-129, (2012)

Averaging over n fluctuations

The distribution in a jet with fix n

$$p^{0} \frac{d \sigma}{d^{3} p}^{n=fix} \propto (1-x)^{n-3}, \qquad x = \frac{P_{\mu} p^{\mu}}{M^{2}/2}$$

The multiplicity distribution

$$P(n) = {n+r-1 \choose r-1} \tilde{p}^n (1-\tilde{p})^r$$

The *n-averaged* distribution

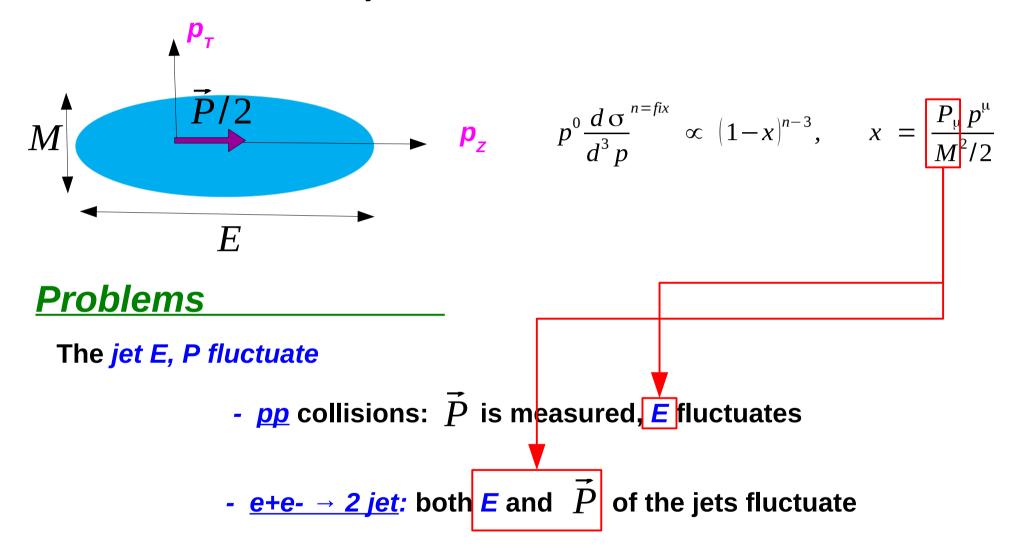
$$p^{0} \frac{d\sigma}{d^{3}p} = A \left[1 + \frac{q-1}{\tau} x \right]^{-1/(q-1)}$$

$$\tau = \frac{1 - \tilde{p}}{\tilde{p}(r+3)}$$

$$q = 1 + \frac{1}{r+3}$$

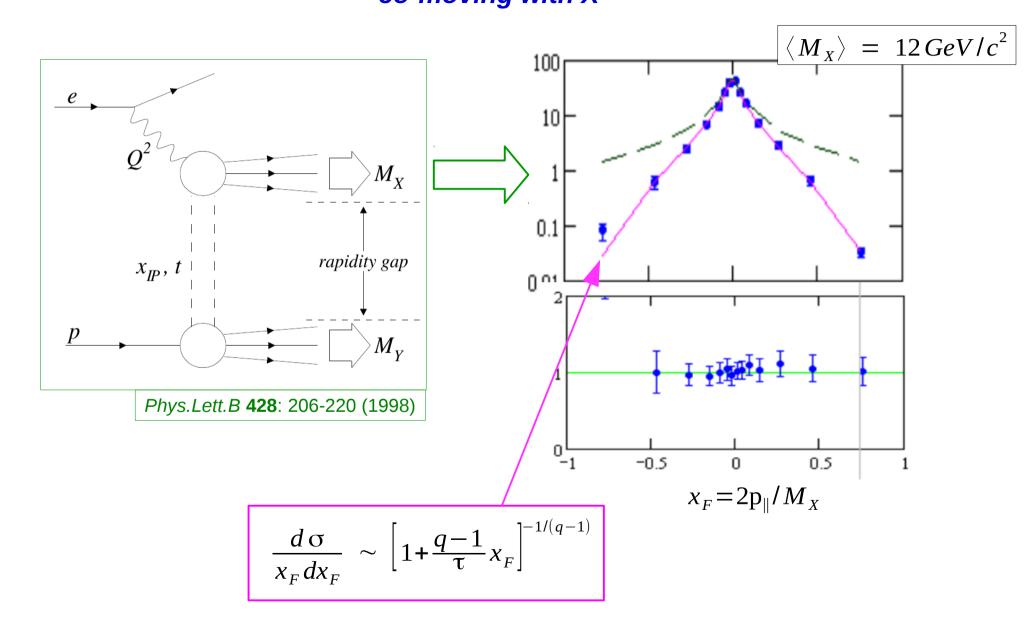
$$q = 1 + \frac{1}{r+3}$$

The haron distribution in a jet of n hadron with total momentum P

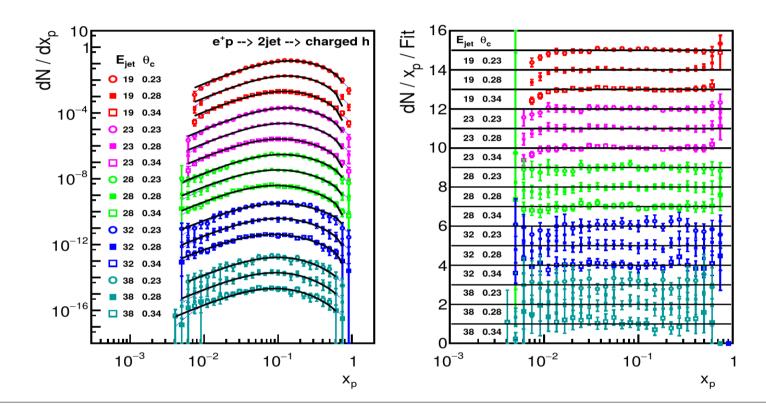


Results

Charged hadrons from diffractive \underline{eP} collisions in a frame co-moving with X

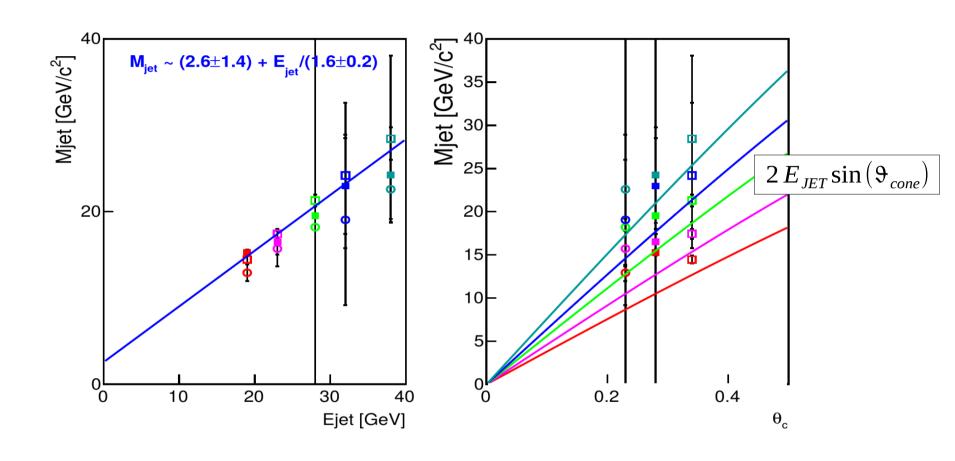


e⁺P → 2 jets → charged hadrons with large rapidity gap



$$\frac{d\sigma}{dx_p} \sim x_p \left[1 + \frac{q-1}{\tau} x_p \right]^{-1/(q-1)} \qquad M_{2JET} = \frac{E_1 + E_2}{2}$$

$$x_p = 2p/M_{2JET} \qquad \frac{E_1}{E_2} = 1 \pm 0.2$$

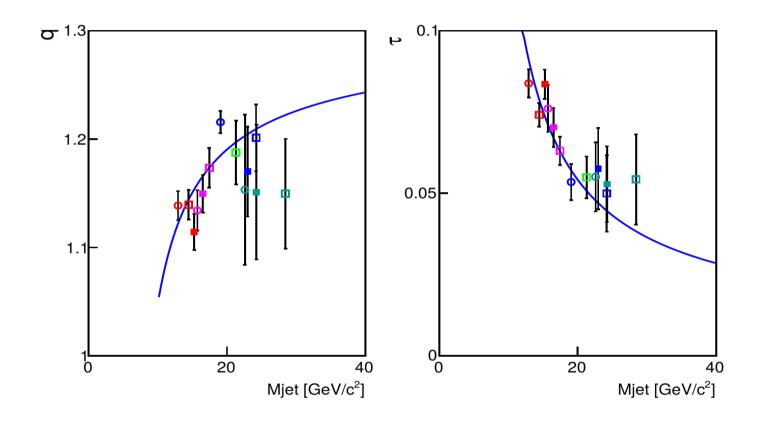


fitted $\langle M_{JET} \rangle = M_0 + E_{JET}/E_0$

Fitted average jet mass is of the order of that used in DGLAP calcs.

$$\langle M_{JET} \rangle \sim 2 E_{JET} \sin(\theta_{cone})$$

Scale evolution of the fit parameters



What we have:

 an approximate formula for the fragmentation function which does not solve DGLAP

$$D(x) \sim \left[1 + \frac{q-1}{\tau}x\right]^{-1/(q-1)}$$

• Let us use this ansatz with scale dependent parameters

$$q, T \sim q(t), T(t)$$

along with some other conjectures

First step: <u>in the Φ³ theory</u>

The Φ^3 theory case

Resummation of branchings with **DGLAP**

$$\frac{d}{dt}D(x,t) = g^2(t)\int_x^1 \frac{dz}{z}P(z)D(x/z,t), \quad t = \ln(Q^2/Q_0^2)$$

with LO splitting function:
$$P(z) = z(1-z) - \frac{1}{12}\delta(1-z)$$

M. Grazzini,

Nucl. Phys. Proc. Suppl.

64: 147-151, 1998

Let the non-perturbative input at starting scale Q_0 be:

$$D_0(x) = \left(1 + \frac{q_0 - 1}{\tau_0} x\right)^{-1/(q_0 - 1)}$$

The full solution is
$$\frac{dN}{dx} = \int_{x}^{1} \frac{dz}{z} f(z,t) d(x/z,t')$$

with
$$f(x) \sim \delta(1-x) + \sum_{k=1}^{\infty} \frac{b^k}{k!(k-1)!} \sum_{j=0}^{k-1} \frac{(k-1+j)!}{j!(k-1-j)!} x \ln^{k-1-j} \left[\frac{1}{x} \right] [(-1)^j + (-1)^k x]$$

$$b = \beta_0^{-1} \ln \left(\frac{\ln(Q^2/\Lambda^2)}{\ln(Q_0^2/\Lambda^2)} \right)$$

Approximations

Let the FF preserve its form:

$$D_{apx}(x,t) = \left(1 + \frac{q(t) - 1}{\tau(t)}x\right)^{-1/(q(t) - 1)} \quad \text{with} \quad D(x,0) = \left(1 + \frac{q_0 - 1}{\tau_0}x\right)^{-1/(q_0 - 1)}$$

From DGLAP:

$$\tilde{D}(s,t) = \tilde{D}(s,0)\exp\{b(t)\tilde{P}(s)\}$$
 with

$b(t) = \beta_0^{-1} \ln(t), t = \frac{\ln(Q^2/\Lambda^2)}{\ln(Q_0^2/\Lambda^2)}$

Let us prescribe the approximations:

$$\int D_{apx}(x,t) = \int D(x,t)$$

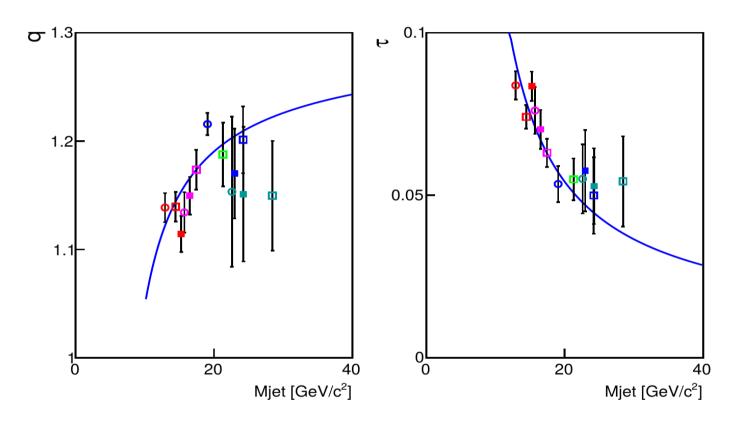
$$\int x D_{apx}(x,t) = \int x D(x,t) = 1$$
(by definition)
$$\int x^2 D_{apx}(x,t) = \int x^2 D(x,t)$$

$$q(t) = \frac{(8q_0 - 12)t^{a1} - (9q_0 - 12)t^{-a2}}{(6q_0 - 9)t^{a1} - (6q_0 - 8)t^{-a2}}$$

$$\tau(t) = \frac{\tau_0}{(6q_0 - 8)t^{-a2} - (6q_0 - 9)t^{a1}}$$

$$a_1 = \tilde{P}(1)/\beta_0, \quad a_2 = \tilde{P}(3)/\beta_0$$

Scale evolution of the fit parameters



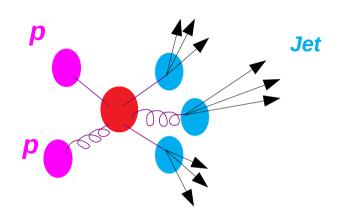
$$q(t) = \frac{(8q_0 - 12)t^{a1} - (9q_0 - 12)t^{-a2}}{(6q_0 - 9)t^{a1} - (6q_0 - 8)t^{-a2}}$$

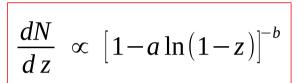
$$\tau(t) = \frac{\tau_0}{(6q_0 - 8)t^{-a^2} - (6q_0 - 9)t^{a^1}}$$

$$t = \frac{\ln(M^2/\Lambda^2)}{\ln(Q_0^2/\Lambda^2)}$$

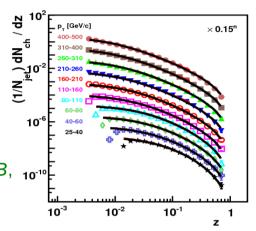
pp & ee collisions

<u>pp</u> → <u>jets</u> @LHC (pT = 25-500 GeV/c)

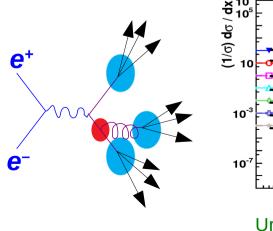


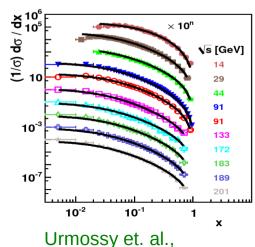


Urmossy et.al. Phys. Lett. B, 10-10 **718**, 125-129, (2012)

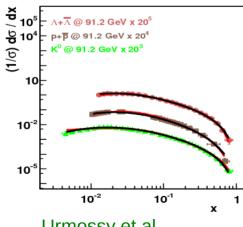


e^+e^- annihilation @LEP ($\sqrt{s} = 14-200 \text{ GeV}$)

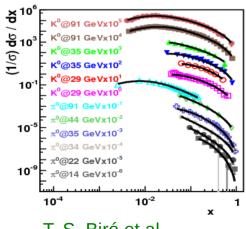




Urmossy et. al., Phys. Lett. B, 701, 111-116 (2011)

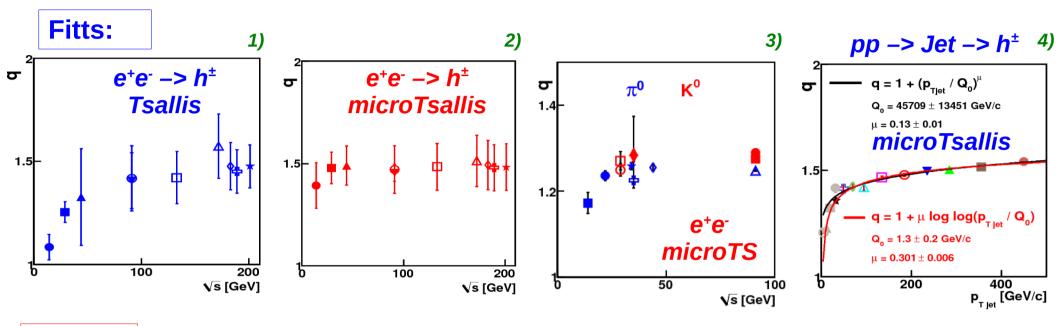


Urmossy et.al., Acta Phys. Polon. Supp. 5 (2012) 363-368

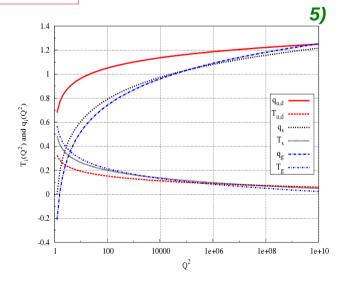


T. S. Biró et.al., Acta Phys. Polon. B, 43 (2012) 811-820

Scale Evolution



Theory: Scale evolution of q, T from fits to AKK Frag. Funcs:

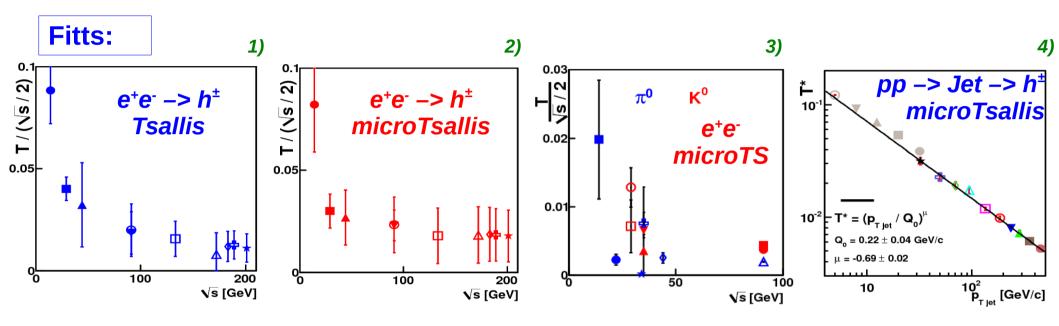


$$D_{p_i}^{\pi^+}(z) \sim (1 + (q_i - 1)z/T_i)^{-1/(q_i - 1)}$$

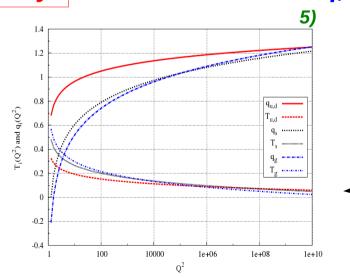
$$q_i = q_{0i} + q_{1i} \ln(\ln(Q^2))$$

- 1-2) U.K. etal., Phys.Lett. B, 701 (2011) 111-116
- 3) T. S. Biró etal., Acta Phys. Polon. B, 43 (2012) 811-820
- 4) U.K. etal., Phys.Lett. B, 718 (2012) 125-129
- 5) Barnaföldi etal., *Gribov-80 Conf*: C10-05-26.1, p.357-363

Scale Evolution



Theory: Scale evolution of q, T from fits to AKK Frag. Funcs:



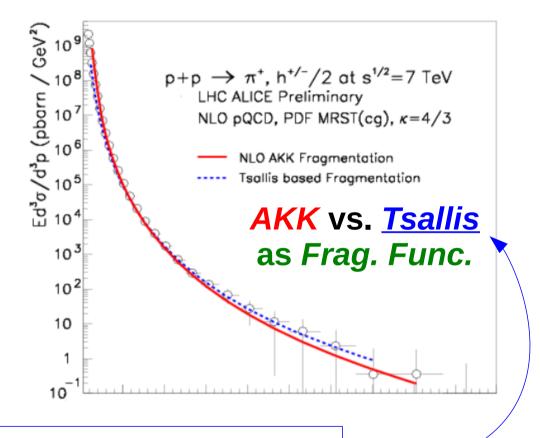
$$D_{p_i}^{\pi^+}(z) \sim (1+(q_i-1)z/T_i)^{-1/(q_i-1)}$$

$$-T_i = T_{0i} + T_{1i} \ln(\ln(Q^2))$$

- 1-2) U.K. etal., Phys.Lett. B, 701 (2011) 111-116
- 3) T. S. Biró etal., Acta Phys.Polon. B, 43 (2012) 811-820
- 4) U.K. etal., Phys.Lett. B, 718 (2012) 125-129
- 5) Barnaföldi etal., *Gribov-80 Conf*: C10-05-26.1, p.357-363

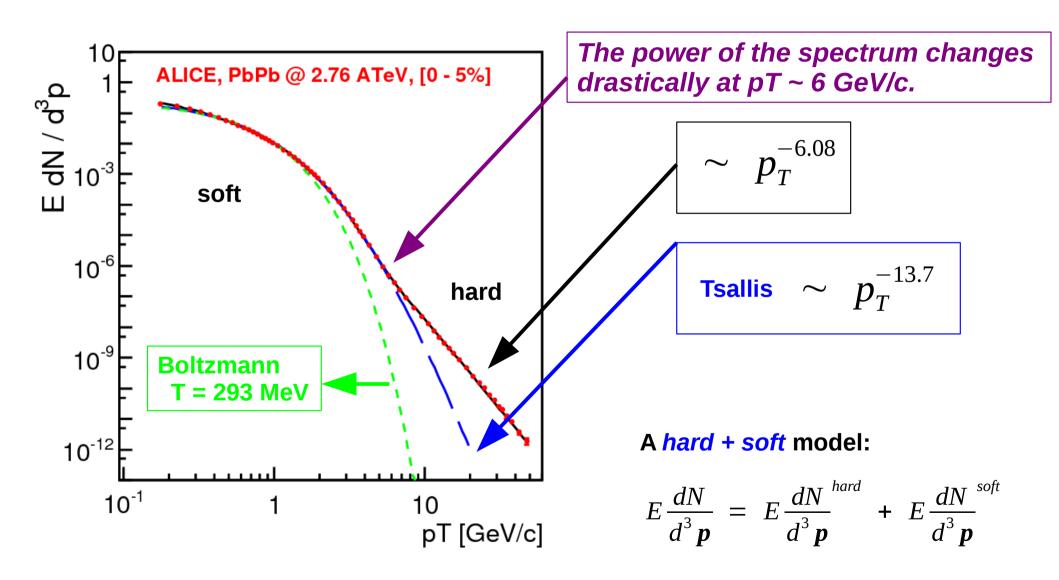
Application in a pQCD calculation

 π^+ spectrum in pp --> $\pi^\pm X \otimes \sqrt{s}=7$ TeV (NLO pQCD)

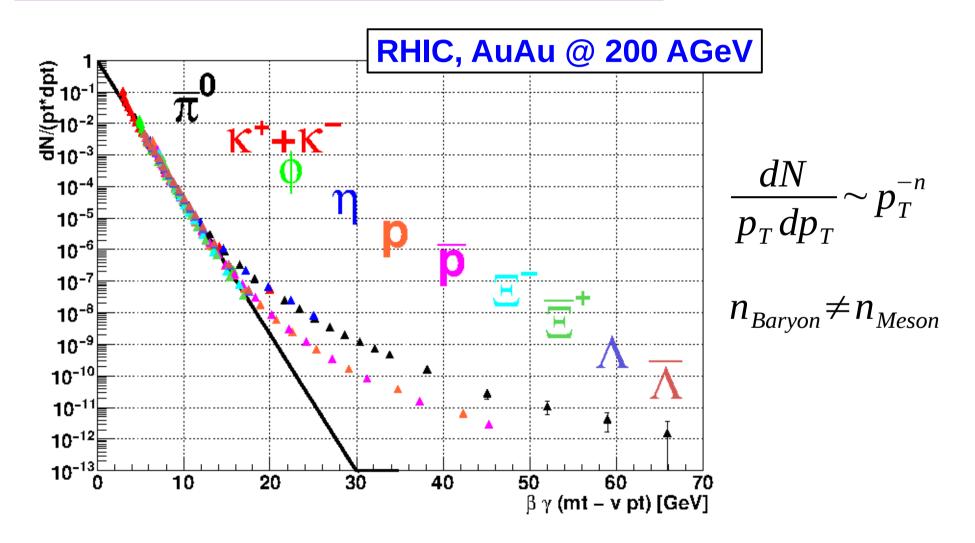


$$D_{p_i}^{\pi^*}(z) \sim (1 + (q_i - 1)z/T_i)^{-1/(q_i - 1)}$$

How about the soft part?



Different q for baryons and mesons



• Hadronisation: rapid coalescence of thermal quarks and gluon fibres:

$$F_h(P_h, x) = f_q(x, p_{q1}) * ... * f_q(x, p_{qn}) G(m) C(p_{qi}, m)$$

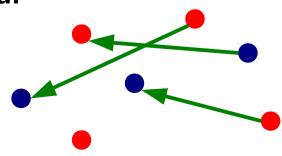
quarks:
$$f_q(x, \vec{p}_q) = \left(1 + \frac{q-1}{T} \epsilon_q\right)^{-1/(q-1)}$$

K. Urmossy

gluon fibres:
$$G(m) = \exp\left(-\left[\Gamma(1+1/d)\frac{m}{\langle m\rangle}\right]^d\right)$$

kernel:
$$C(x, p_{qi}) = \delta^3 \left(\sum_i \vec{p}_i - \vec{P}_h \right) \prod_{i,j} \delta^3 \left(\vec{p}_i - \vec{p}_j \right) \delta \left(\sum_i \epsilon_i + m - E_h \right)$$

• The distribution of the length of gluon fibres: is the probability of finding two quarks at distance $l = \sigma/m$ in a hogenous quark sea with fractal dimension d.

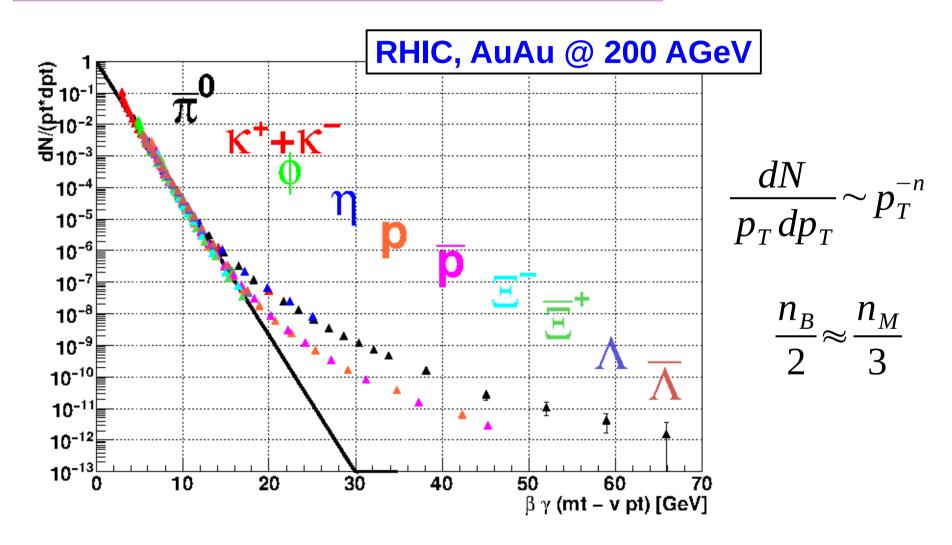


T S Biró etal,

- J. Phys. G-Nucl. Part. Phys., 37, 9, (2010)
- J. Phys. G., G36, 064044, (2009)

Eur. Phys. J. A, 40, 325-340, (2009)

Different q for baryons and mesons



(1) Statistical description of hadron spectra:

K. Urmossy

$$E\frac{dN}{d^3 \boldsymbol{p}} = \sum_{\text{sources}} f[u_{\mu} p^{\mu}]$$

(2) Space-time dependence only through $u_{_{II}}(x)$ Bjorken + Blast Wave

$$u_{\mu} = (\gamma \cosh \zeta, \gamma \sinh \zeta, \gamma v \cos \alpha, \gamma v \sin \alpha), \qquad \zeta = \frac{1}{2} \ln \left(\frac{t+z}{t-z} \right)$$
$$v(\alpha) = v_0 + \sum_{1}^{N} \delta v_m \cos(m\alpha)$$

Then, the spectrum and the v2 are

$$\frac{dN}{p_T dp_T dy} \propto f[E(v_0)] + O(\delta v^2)$$

$$v_2 \propto \delta v_2 (v_0 m_T - p_T) \frac{f'[E(v_0)]}{f[E(v_0)]} + O(\delta v^2)$$

$$E(v_0) = \gamma_0 (m_T - v_0 p_T)$$

Then, the spectrum and the v2 are

$$\frac{dN}{p_T dp_T dy} \propto f[E(v_0)] + O(\delta v^2) \qquad E(v_0) = \gamma_0 (m_T - v_0 p_T)$$

$$v_2 \propto \delta v_2 (v_0 m_T - p_T) \frac{f'[E(v_0)]}{f[E(v_0)]} + O(\delta v^2)$$

Boltzmann-distribution:

$$f[E(v_0)] \propto e^{-E(v_0)/T}$$
 $v_2 \propto p_T - v_0 m_T$

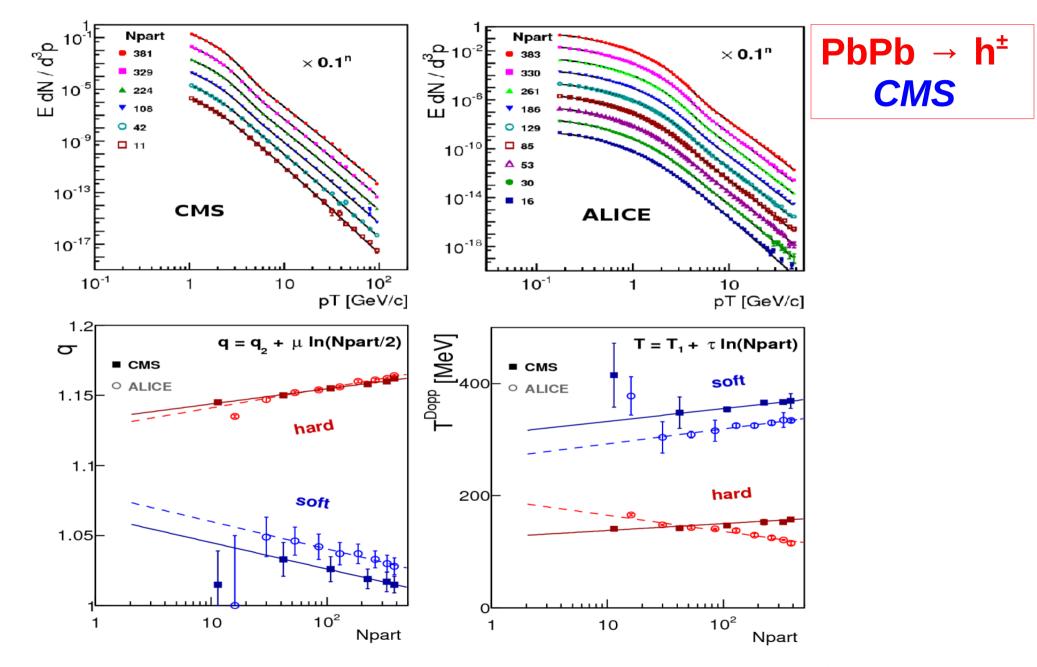
Tsallis-distribution:

$$f[E(v_0)] \propto \left[1 + (q-1) \frac{E(v_0) - m}{T}\right]^{-1/(q-1)}$$
 $v_2 \propto \frac{p_T - v_0 m_T}{1 + \frac{q-1}{T}[\gamma_0(m_T - v_0 p_T) - m]}$

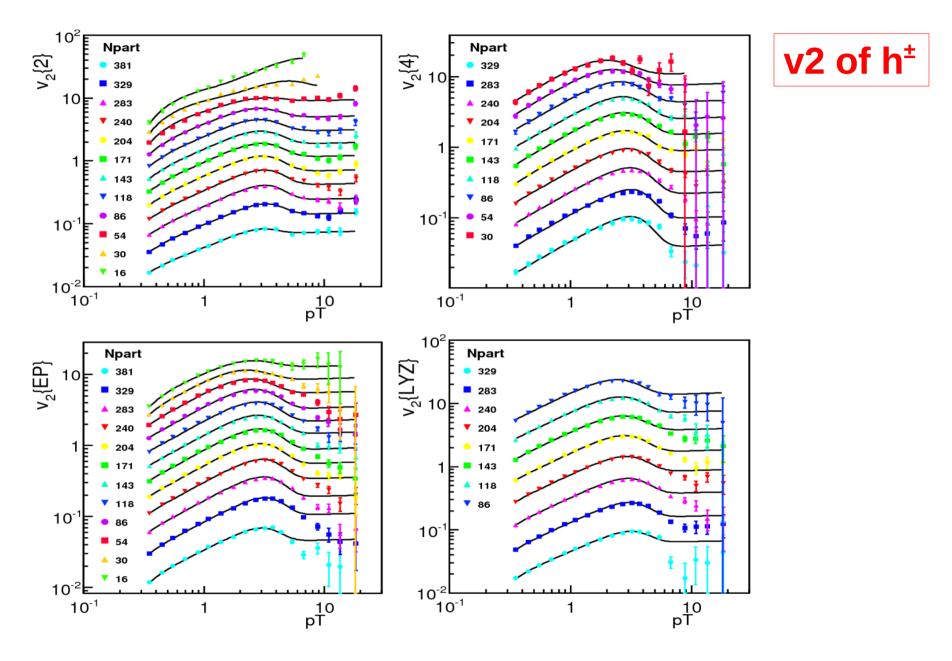
Barnaföldi etal, (Hot Quarks 2014) J. Phys. Conf. Ser. 612 (2015) 1, 012048

Urmossy etal, (WPCF 2014) arXiv:1501.05959, Conference: C14-08-25.8

Urmossy etal, (High-pT 2014), arXiv:1501.02352, arXiv:1405.3963



arXiv:1405.3963

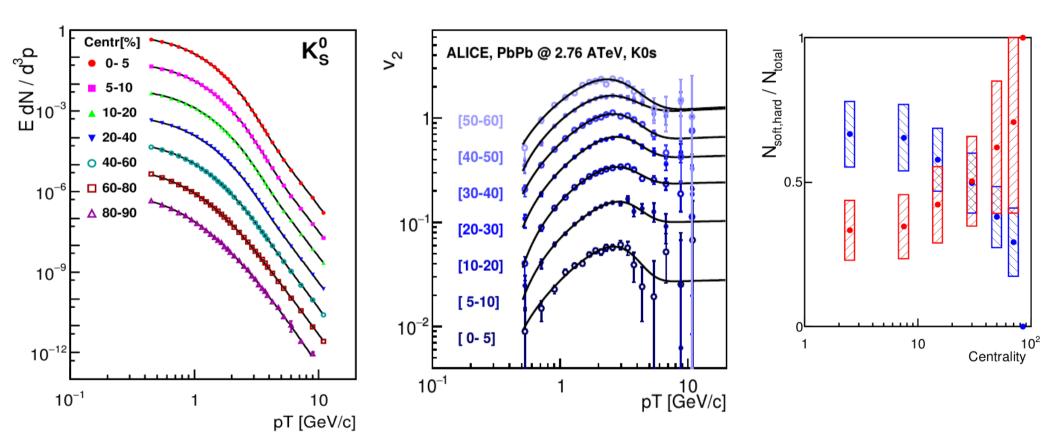


arXiv:1405.3963

K. Urmossy – Hadronisation @ LEP, RHIC & LHC

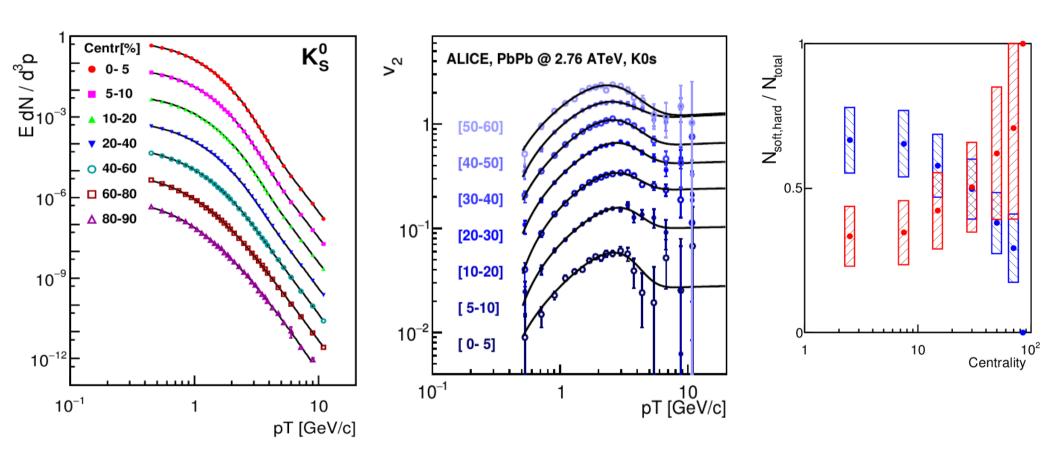
3.

PbPb → K⁰s *ALICE*



Preliminary

Application in heavy-ion collisions



Preliminary

Conclusion

Jet-fragmentation might be statistical?

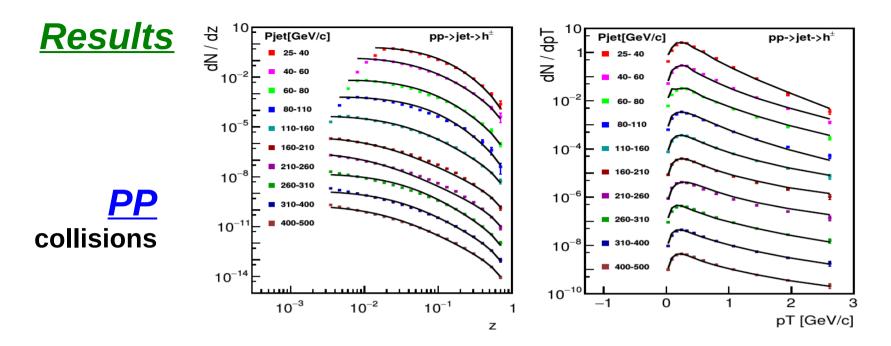
• Suggestion

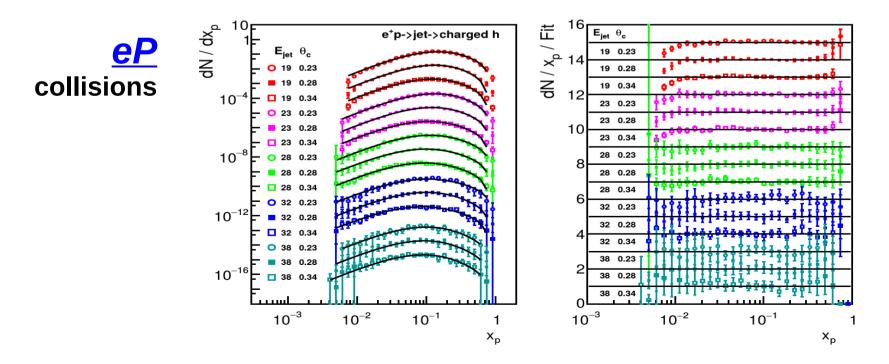
It might be more suitable to

characterise JETs with their MASS

instead of thier P or E

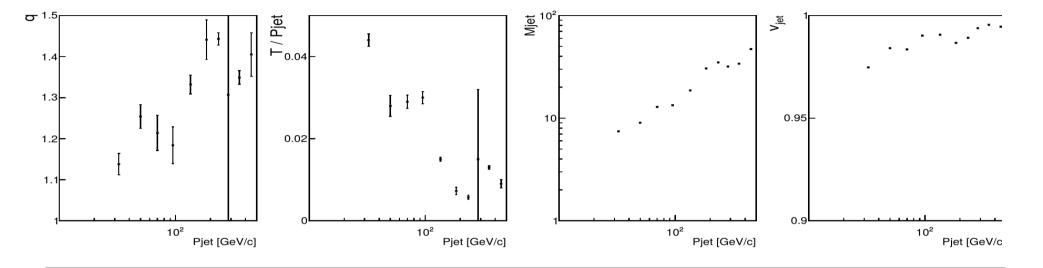
Thanks for the attention



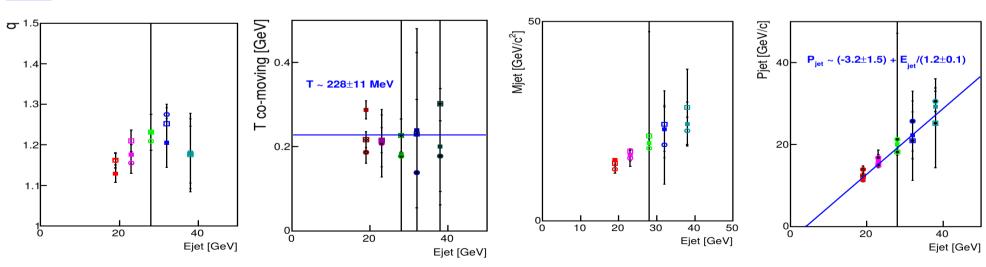


Results

PP



<u>eP</u>



Averaging over n fluctuations

The distribution in a jet with fix n

$$p^{0} \frac{d \sigma}{d^{3} p}^{n=fix} \propto (1-x)^{n-3}, \qquad x = \frac{P_{\mu} p^{\mu}}{M^{2}/2}$$

The multiplicity distribution

$$P(n) = {n+r-1 \choose r-1} \tilde{p}^n (1-\tilde{p})^r$$

The *n-averaged* distribution

$$p^{0} \frac{d\sigma}{d^{3} p} = A \left\{ \left(1 + \frac{\tilde{p}}{1 - \tilde{p}} x \right)^{-r - 3} - \sum_{3}^{n_{0} - 1} P(n) n f_{n}(x) \right\}$$

What is T?

If in a single event / jet, we have equipartition:

1 event:
$$\frac{E_{event}}{N_{event}} = DT_{event}$$

On the average, we have:

$$\frac{E}{N} = \frac{\int \epsilon f_{TS}(\epsilon)}{\int f_{TS}(\epsilon)} = \frac{DT}{1 - (q - 1)(D + 1)}$$

(m ≈ 0 particles)