theguardian

home > science

Science Life and Physics

How big is a quark?

They are the smallest things we know. But *how* do we know? A new result from an old experiment in Hamburg sets a tighter limit on the size of a fundamental particle.

🍠 @jonmbutterworth

Thursday 7 April 2016 06.05 BST

Save for later

🗖 Grains of sand in Hamburg. Because quarks are just too small.

24th International Workshop on Deep-Inelastic Scatterring and Related Subjects

14 April 2016

DESY, Germany

Limits on the effective quark radius from inclusive e[±]p scattering at HERA

<u>O. Turkot</u> On behalf of ZEUS Collaboration

- ZEUS and H1 inclusive data combination
- Quark form factor model
- Limits-setting procedure using the simultaneous fit of quark form factor and PDFs

14 April 2016

HERA — world only e[±]p collider

HERA data provides unique opportunity to study the structure of the proton.

e[±] energy 27.5 GeV; *p* energies 920, 820, 575 and 460 GeV.

Kinematics of the e[±]p collisions:

$$Q^{2} = -(k - k')^{2}$$
$$x = \frac{Q^{2}}{2P \cdot q} \qquad y = \frac{P \cdot q}{P \cdot k}$$

H1 and ZEUS — two collider experiments at HERA : ~ 0.5 fb⁻¹ of luminosity recorded by each experiment.

Combined Inclusive DIS

Combined Inclusive DIS

Effects of electroweak unification clearly seen.

QCD analysis of combined DJS data

Neutral Current :

$$\frac{d^{2}\sigma_{NC}^{e\mp p}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \cdot (Y_{+} \cdot F_{2} \pm Y_{-} \cdot x \cdot F_{3} - y^{2} \cdot F_{L})$$

$$Y_{\pm} = 1 \pm (1 - y)^{2}$$

$$F_{2} = \frac{4}{9} (xU + x\bar{U}) + \frac{1}{9} (xD + x\bar{D})$$

$$x \cdot F_{3} \sim xu_{v} + xd_{v}$$
Similar equation for CC DIS.

Parton Density Functions parametrization at starting scale $Q^2 = 1.9 \text{ GeV}^2$:

- $x g(x) = A_{g} x^{B_{g}} (1-x)^{C_{g}} A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}$ $x u_{v}(x) = A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+D_{u_{v}} x+E_{u_{v}} x^{2})$ $x d_{v}(x) = A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}$ $x \bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x)$ $x \bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}$
- fixed or calculated by sum-rules

set equal

- Evolve to any Q² with DGLAP at NLO.
- Use Thorne-Roberts GMVFN scheme for Heavy quarks.

QCD analysis of combined DJS data

Eur. Phys. J. C 75 (2015) 580 arXiv:1506.06042

More information on HERAPDF2.0 analysis you might have seen in the plenary talk "The HERA Legacy" by Paul Newman on Monday.

Oleksii Turkot

Quark form factor

One of the possible parameterisations of deviations from SM – spatial distribution or substructure of electrons and/or quarks.

In a semi-classical form factor approach cross sections are expected to **decrease** at high-Q²:

$$\frac{d\sigma}{dQ^{2}} = \frac{d\sigma}{dQ^{2}} \left(1 - \frac{R_{e}^{2}}{6}Q^{2}\right)^{2} \left(1 - \frac{R_{q}^{2}}{6}Q^{2}\right)^{2} \left(1 - \frac{R_{q}^{2}}{6}Q^{2}\right)^{2}$$

 R_{e} , R_{q} – root mean square radii of the electroweak charge distributions in the electron and quark.

Same dependence expected for NC and CC e⁺p and e⁻p.

We assume electron to be point-like, $R_{e}^{2} = 0$.

We consider both, positive and negative values of R^{2}_{a} .

ZEUS QCD + BSM analysis of combined DIS data

HERA data is a core of any PDF extraction, and thus simultaneous fit, PDF+BSM, is necessary for any BSM analysis.

By minimazing the χ^2 function:

$$\chi^{2}_{\exp}(\boldsymbol{p},\boldsymbol{s},\boldsymbol{R}^{2}_{q}) = \sum_{i} \frac{[m^{i}(\boldsymbol{p},\boldsymbol{R}^{2}_{q}) + \sum_{j} \gamma^{j}_{i} s_{j} m^{i}(\boldsymbol{p},\boldsymbol{R}^{2}_{q}) - \mu^{i}_{0}]^{2}}{\delta^{2}_{i,tot.\,uncor.}(\mu^{i}_{0})^{2}} + \sum_{j} s^{2}_{j}$$

$$\begin{array}{c} \boldsymbol{p} - \text{PDF parameters} \\ \boldsymbol{s} - \text{systematic shifts} \\ m^{i} - \text{model expectations} \\ \gamma, \delta - \text{relative systematic and total} \\ \text{uncorrelated uncertainties} \end{array}$$

 μ_{o}^{i} – measured cross sections

PDF parameters p were fitted on data simultaneously with quark form factor R_q^2 :

$$R_q^{2 \text{ Data}} = - [0.14 \cdot 10^{-16} \text{ cm}]^2$$

in agreement with SM expectation of $R_{a}^{Data} = 0$.

Frequentist approach

Monte Carlo replicas of the whole data set were generated as:

$$\mu^{i} = [m_{0}^{i} + \delta_{tot.uncor.}^{i} \cdot r_{tot.uncor.}^{i} \cdot \mu_{0}^{i}] \cdot (1 + \sum_{j} \gamma^{j} \cdot r_{sys.sh.}^{j})$$

rⁱ, r^j – Gaussian random numbers.

For example, for $R_a^{True} = 0.48 \cdot 10^{-16} \text{ cm}$:

Oleksii Turkot

Analysis Flowchart

 $R_q^{\text{Limit}} = 0.40 \cdot 10^{-16} \text{ cm}$

 $R_{a}^{Limit} = 0.43 \cdot 10^{-16} \text{ cm}$

$R_{a}^{2 \text{ Limit}} = - [0.47 \cdot 10^{-16} \text{ cm}]^{2}$

Comparison of R^2_{a} exclusion limits to HERA NC ep DIS data.

Oleksii Turkot

Comparison of R²_a exclusion limits to HERA CC ep DIS data.

Oleksii Turkot

First BSM analysis based on the final HERA inclusive data:

$$-[0.47 \cdot 10^{-16} \text{ cm}]^2 < R_a^2 < [0.43 \cdot 10^{-16} \text{ cm}]^2$$

provides us with limit on quark radius ~2000 times smaller than proton

Limits consistent with expected sensitivity:

$$R_q^{sens} = 0.45 \cdot 10^{-16} \text{ cm}$$

Limits based on the new approach: simultaneous fit of PDF and BSM contribution; limits obtained with "previous" method ~10-20 % too strong.

Paper (DESY-16-035) accepted for publication in Physics Letters B, arXiv:1604.01280.

Backup

QCD analysis of combined DJS data

Charged Current :

$$\frac{d^2 \sigma_{CC}^{e \neq p}}{dx dQ^2} = \frac{G_F^2}{4 \pi x} \cdot \kappa^2 \cdot \left(Y_+ \cdot W_2^{\mp} \pm Y_- \cdot x \cdot W_3^{\mp} - y^2 \cdot W_L^{\mp} \right) \\ \kappa = \frac{M_W^2}{M_W^2 + Q^2} \\ W_2^- = x \left(U + \bar{D} \right) \qquad W_2^+ = x \left(D + \bar{U} \right) \\ x W_3^- = x \left(U - \bar{D} \right) \qquad x W_3^+ = x \left(D - \bar{U} \right)$$

QCD analysis of combined DJS data

ZRqPDF set compared to HERAPDF2.0:

