Search for electroweak SUSY production in events with 2 taus + MET at CMS

Hamed BAKHSHIANSOHI (UCL/CP3) on behalf of the CMS collaboration

DIS XXIV / DESY, Hamburg 12 April 2016

CMS Electroweakino Searches

All 8 TeV, but some are fresh

- <u>charginos, neutralinos, and sleptons</u> *decaying to* leptons and W, Z, and Higgs *Eur. Phys. J. C* 74 (2014) 3036
- <u>neutralino and chargino</u> decaying to Higgs, Z, and W Phys. Rev. D 90 (2014) 092007
- VBF production of SUSY JHEP (JHEP 248P 0815)
- <u>Photon + MET</u> arxiv:1602.08772

• <u>2 taus + MET</u> (SUS-14-022)

CMS Electroweakino Searches

All 8 TeV, but some are fresh

- <u>charginos, neutralinos, and sleptons</u> decaying to leptons and W, Z, and Higgs Eur. Phys. J. C 74 (2014) 3036
- <u>neutralino and chargino</u> decaying to Higgs, Z, and W Phys. Rev. D 90 (2014) 092007
- <u>VBF production of SUSY</u> *shep (shep 248P 0815)*
- <u>Photon + MET</u> arxiv:1602.08772

• <u>2 taus + MET</u> (SUS-14-022)

di tau + MET

- Naturalness : third generation s-particles get more interesting
- Light stau (~100GeV) is motivated in GMSB models to result consistent relic density
- Best stau limit so far > ~90GeV by LEP

di tau + MET

- Signal :
- $-q\bar{q} \to (Z/\gamma)^* \to \tilde{\chi}_1^+ \tilde{\chi}_1^-$
- Resumino for the cross section
 - between 5pb to 5fb for chargino mass (100, 500)GeV
 - Between 0.1 fb to 3 fb for stau mass (100, 250) GeV
- Pythia for the modeling

Tau decays and reconstruction

• Hadronic tau reconstruction:

- Starts from jets
- Based on the decay mode
- 3 charged hadrons
- One charged + up to 2 neutral pions

- Performance 50%
 - Tau-tau: 0.25 * 0.41 ~ 10%
 - Lep+ tau: 0.5 * 0.46 ~ 23%
- Higgs mass: lepton+tau the most sensitive
- Here: mu+tau / ele+tau / tau+tau combined

Leptons **Trigger and Offline selection**

- For di hadronic tau :
 - 18.1 fb⁻¹
 - Trigger threshold :
 - pt > 35 GeV
 - |η| < 2.1

- Offline cuts :
 - Pt > 45 GeV
 - Medium Isolated
 - Cleaned against electrons/muons

- For lepton + tau :
 - 19.6 fb⁻¹
 - Trigger thresholds :
 - tau pt > 20
 - electron pt > 20/22
 - Muon pt > 17/18

- Offline cuts :
 - > 25 GeV / $|\eta|$ < 2.3 / Tight Iso
 - > 25 GeV / |η| < 2.1 / Tight ID,ISO
 - $> 20 \text{ GeV} / |\eta| < 2.1 / \text{Tight ID,ISO}$

Event Selection

- Two opposite sign leptons are requested
 - at least one hadronic decay of tau
 - Invariant mass > 15 GeV
 - Z-Veto cut on the invariant mass
- Reject events with any extra leptons
- MET > 30 GeV
- MT2 > 40 GeV
 - MT2 represents the scale of the SUSY particle
 - A function of MET and leptons
- Minimum DeltaPhi of jets and MET > 1
 - Rejects QCD and Wjets backgrounds
- b-jet veto : rejects ttbar events

Lepton + Tau

- Backgrounds with prompt lepton and tau are estimated from simulation
- The main backgrounds are fake taus :
 - To estimate it, the tau isolation cut is loosen
 - In control regions, the probability that a fake/prompt loose tau passes the tight cuts is measured
 - For fakes : 0.54 +- 0.01
 - For prompts : 0.766 +- 0.003
 - It is independent of tau attributes and event selection cuts

Channel	Total Fake	stat	r _{Fake} sys	r _{Real} sys	Total Unc
$\mu \tau_{\rm h}$	8.15	56%	18%	5%	59%
$e au_{ m h}$	3.30	101%	17%	2%	102%

Tau+Tau Selection

- SR1 : High MT2 region (MT2 > 90 GeV) :
 - No extra cut is applied
 - Even the b-veto cut is relaxed (ttbar is already discarded)
- SR2 : Low MT2 region (MT2 < 90 GeV) :
 - Sum of the transverse masses of two hadronic taus is found the best variable to separate signal/bkg
 - SumMT > 200
 - Used by the ATLAS analysis

QCD backgrounds in tau-tau channels

• QCD and multi-jet backgrounds : Events with two fake taus

Signal Region	QCD Estimation
$\tau_{\rm h} \tau_{\rm h} {\rm SR1}$	$0.13 \pm 0.06(\text{stat}) \pm 0.18(\text{sys}) \pm 0.10(\text{fit})$
$\tau_{\rm h} \tau_{\rm h} {\rm SR2}$	$1.15 \pm 0.39(\text{stat}) \pm 0.70(\text{sys}) \pm 0.25(\text{fit})$

W/Z backgrounds in tau-tau channels

- MC is validated using mu+tau data events
- W+Jets
 - the efficiency of the MT2 and SumMT cuts are verified in data

Signal Region	W+jets Estimation
$\tau_{\rm h} \tau_{\rm h} {\rm SR1}$	0.72 ± 0.11 (stat) \pm 0.11 (sys) \pm 0.56 (shape)
$\tau_{\rm h} \tau_{\rm h} {\rm SR2}$	2.58 ± 0.35 (stat) ±1.04 (sys) ±0.69 (shape)

- Z events
 - Events under the z-peak are selected
 - The transverse momentum of the Z boson system, which is correlated with MT2, is also well reproduced in simulation.

Signal Region	DY Estimation
$e au_{ m h}$	0.19 ± 0.04
$\mu \tau_{\rm h}$	0.25 ± 0.06
$ au_{\rm h} au_{\rm h} { m SR1}$	0.56 ± 0.07
$ au_{\rm h} au_{\rm h} { m SR2}$	0.81 ± 0.56

Systematic uncertainties

	Background		Signal			
Systematic uncertainty source	$\ell \tau_{\rm h}$	τ _h τ _h SR1	$ au_{ m h} au_{ m h}$ SR2	$\ell \tau_{\rm h}$	$ au_{ m h} au_{ m h}$ SR1	$ au_{\rm h} au_{\rm h}$ SR2
$\tau_{\rm h}$ energy scale (*)	10% 15%		2-12%	3-15%		
$\tau_{\rm h}$ id efficiency	6%	% 12%		6%	12%	
$\tau_{\rm h}$ trigger efficiency	3% 9%		3%	9%		
Lepton trigger, id, iso efficiency	2%	.% -		2%	-	
$p_{\mathrm{T}}^{\mathrm{miss}}$ (*)	5%		5%			
b-tagged jets veto	4%	-	4%	8%	-	8%
Pile-up	4%		4%			
Fast/Full τ_h id efficiency	-		5% 10%			
ISR (*)	-		3%			
$\Delta \phi_{\min}$	-		6%			
PDF (*)	-		2%			
Luminosity	-		2.6%			
Total shape-altering sys.	11%	16%	16%	6-13%	7-1	6%
Total non-shape-altering sys.	9%	16%	16%	14%	20%	21%
Total Systematic	14%	22%	22%	15-19%	21-25%	22-26%
Monte Carlo Statistic	22%	13%	70%		3-15%	
Total	26%	26%	73%	15-24%	21-29%	22-30%
Low rate backgrounds		50%			-	

Results

Interpretations

Summary and Conclusion

- A dedicated search for
 - direct stau production
 - chargino production decaying to stau
- MT2 is used to separate the signal and background
- 4 Signal regions
 - High MT2 : (Di-hadronic taus | e/mu + hadronic tau)
 - Low MT2 : Only di-hadronic taus / SumMT cut
- Backgrounds are estimated : Data Driven / Simulation verified using data
- No sign of new physics is observed
 - Chargino masses excluded up to ~420 GeV
 - Not sensitive to stau

Backup slides

MT2

MT2

 \sim

 $(m_{\mathrm{T}}^{(i)})^{2} = (m^{\mathrm{vis}(i)})^{2} + m_{\tilde{\chi}_{1}^{0}}^{2} + 2(E_{\mathrm{T}}^{\mathrm{vis}(i)}E_{\mathrm{T}}^{\tilde{\chi}_{1}^{0}(i)} - \vec{p}_{\mathrm{T}}^{\mathrm{vis}(i)}.\vec{p_{\mathrm{T}}}_{\mathrm{T}}^{\tilde{\chi}_{1}^{0}(i)}).$

MT2

$$M_{\mathrm{T2}}(m_{\tilde{\chi}_{1}^{0}}) = \min_{\vec{p}_{\mathrm{T}}^{\tilde{\chi}_{1}^{0}(1)} + \vec{p}_{\mathrm{T}}^{\tilde{\chi}_{1}^{0}(2)} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}} \left[\max\left\{ m_{\mathrm{T}}^{(1)}, m_{\mathrm{T}}^{(2)} \right\} \right].$$

