

FRAGMENTATION FUNCTIONS BEYOND Next-To-Leading Order

Hamburg, 12.04.2016

Anderle, Kaufmann, Ringer, Stratmann

Speaker: Daniele Paolo ANDERLE

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- Our E+E- NNLO Fit
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

DATA SETS:

SI-e ⁺ e ⁻	old: TPC(Phys. Rev. Lett 61, 1263 (1998)), SLD(Phys. Rev. D59,052001 (1999)), ALEPH(Phys. Lett. B357, 487 (1995)), DELPHI(Eur. Phys. J. C5, 585 (1998),Eur. Phys. J.C6, 19 (1999)) OPAL(Eur. Phys. J. C16, 407 (2000),Eur. Phys. J.C7, 369 (1999)), TASSO(Z. Phys.C42, 189 (1989))
SIDIS	old: EMC(Z. Phys. C52, 361 (1991)), JLAB(Phys. Rev. Lett. 98, 022001)
SI- p(anti-)p	old: CDF(Phys. Rev. Lett. 61,1819 (1988)), UAI (Nucl. Phys. B335,261 (1990)), UA2(Z. Phys. C27, 329 (1985))

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

DATA SETS:

SI-e⁺e⁻

SI- p(anti-)p

DIS 2016

mew: BaBar(Phys. Rev. D 88, 032011 (2013)), Belle(Phys. Rev. Lett. 111, 062002 (2013))

SIDIS new: HERMES(Ph.D. thesis, Erlangen Univ., Germany, September 2005), Compass(PoS DIS 2013, 202 (2013)), JLAB@12GeV

> new: Phenix(Phys. Rev. D 76,051106 (2007)), Alice(Phys. Lett. B 717, 162 (2012).), Brahms(Phys. Rev. Lett. 98, 252001 (2007)), Star(Phys. Rev. Lett. 97, 152302 (2006))

 $pp \rightarrow (let h)X \longrightarrow future: Star, CMS(JHEP 1210, 087 (2012)), Alice(arXiv:1408.5723), Atlas(Eur. Phys. J. C 71, 1795 (2011))$

Eberhard Karls Universität Tübingen

TOWARDS A GLOBAL NNLO FF FIT

Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO EVOLUTION KERNELS:

Splitting functions NNLO-Non Singlet: Mitov, Moch, Vogt(Phys.Lett. B638 (2006) 61-67) NNLO-Singlet: Moch, Vogt(Phys.Lett.B659 (2008) 290-296)

NNLO-Singlet: Almasy, Mitov, Moch, Vogt(Nucl. Phys. B854 (2012)) 133-152)

Both computed in x-Space and in Mellin Space

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

SI- p(anti-)p ----> NOT COMPUTED YET

PP→(Jet h)X → NOT COMPUTED YET

Universität

Tübingen

TOWARDS A GLOBAL NNLO FF FIT Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SIDIS Soft gluon Resummed results (can be expanded @ NNLO) Anderle,Ringer,Vogelsang (Phys.Rev. D87 (2013) 094021, Phys.Rev. D87 (2013) 3,034014)

SI- p(anti-)p ----> Soft gluon Resummed results (can be expanded @ NNLO)

Work in progress for $\frac{d\sigma}{dp_T d\eta}^{(NNLL)}$ Hinderer, Ringer, Sterman, Vogelsang

7

pp→(let h)X → Resummed results (can be expanded @ NNLO)

Work in progress from T. Kaufmann, Vogelsang

DIS 2016

TOWARDS A GLOBAL NNLO FF FIT

Anderle, Ringer, Stratmann

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

To include the last processes we need a

NNLO Mellin Space Fitting Program

8

DIS 2016

berhard Karls Universität Tübingen

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- Our E+E- NNLO Fit
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

THE TIME-LIKE EVOLUTION

In the factorisation procedure, the absorption of collinear singularities by fragmentation functions (FF)(in case of massless partons) leads to scaling violation and the appearance of a factorisation scale μ_F

The scale dependance of FF is governed by the Time-Like DGLAP

$$\frac{\partial}{\partial \ln \mu_F^2} D_i^h(x, \mu_F^2) = \sum_j \int_x^1 \frac{dy}{y} P_{ji}\left(y, \alpha_s(\mu_F^2)\right) D_j^h\left(\frac{x}{y}, \mu_F^2\right)$$

10

Time-Like Splitting function perturbatively calculable

DIS 2016

 $P_{ji}(y, \alpha_s) = \sum_{k=0}^{k} a_s^{k+1} P_{ji}^{(k)}(y)$

Eberhard Karls Universität Tübingen Usually rewritten into $2n_f - 1$ equations (charge conjugation and flavour symmetry)

$$D_{\text{NS};v}^{h} = \sum_{i=1}^{n_{f}} (D_{q_{i}}^{h} - D_{\bar{q}_{i}}^{h})$$
$$D_{\text{NS};\pm}^{h} = (D_{q_{i}}^{h} \pm D_{\bar{q}_{i}}^{h}) - (D_{q_{j}}^{h} \pm D_{\bar{q}_{j}}^{h})$$

$$\frac{\partial}{\partial \ln \mu_F^2} D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2) = P^{\pm,\mathrm{v}}(x,\mu_F^2) \otimes D^h_{\mathrm{NS};\pm,v}(x,\mu_F^2)$$

and two coupled

NON-SINGLET

SINGLET $D_{\Sigma}^{h} = \sum_{i=1}^{n_{f}} \left(D_{q_{i}}^{h} + D_{\bar{q}_{i}}^{h} \right)$ D_{g}^{h}

$$\frac{\partial}{\partial \ln \mu_F^2} \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right) = \left(\begin{array}{cc} P^{\rm qq} & 2n_f P^{\rm gq} \\ \frac{1}{2n_f} P^{\rm qg} & P^{\rm gg} \end{array} \right) \otimes \left(\begin{array}{c} D_{\Sigma}^h(x,\mu_F^2) \\ D_g^h(x,\mu_F^2) \end{array} \right)$$

11

DIS 2016

erhard Karls Universität Tübingen \mathbf{n}

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET

$$P_{\rm ns}^{\pm} = P_{\rm qq}^{\,\rm v} \pm P_{\rm q\bar{q}}^{\,\rm v}$$
$$P_{\rm ns}^{\,\rm v} = P_{\rm qq}^{\,\rm v} - P_{\rm q\bar{q}}^{\,\rm v} + n_f (P_{\rm qq}^{\,\rm s} - P_{\rm q\bar{q}}^{\,\rm s}) \equiv P_{\rm ns}^{\,\rm -} + P_{\rm ns}^{\,\rm s}$$

DIS 2016

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

UNIVERSITÄT Tübingen

The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET
$$P_{\rm ns}^{\pm} = P_{\rm qq}^{\,\rm v} \pm P_{\rm q\bar{q}}^{\,\rm v}$$

 $P_{\rm ns}^{\,\rm v} = P_{\rm qq}^{\,\rm v} - \mathcal{N}_{\rm q\bar{q}}^{\,\rm v} + n_f (\mathcal{P}_{\rm qq} - \mathcal{P}_{\rm q\bar{q}}^{\,\rm s}) \equiv P_{\rm ns}^{\,-} + \mathcal{N}_{\rm ss}^{\,\rm s}$

$$\textcircled{OLO} \qquad P_{\rm ns}^{\,\rm v} = P_{\rm ns}^{\,\pm}$$

DIS 2016

$$\begin{aligned} P_{\rm qq} &= P_{\rm ns}^{+} + n_f (P_{\rm qq}^{\rm s} + P_{\rm qq}^{\rm s}) \equiv P_{\rm ns}^{+} + P_{\rm ns} \\ P_{\rm gq} &\equiv P_{{\rm gq}_i} = P_{{\rm g}\bar{\rm q}_i} \\ P_{\rm qg} &\equiv n_f \, P_{{\rm q}_i{\rm g}} = n_f \, P_{\bar{\rm q}_i{\rm g}} \end{aligned}$$

13

^{berhard Karls} Universität Tübingen The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET
$$P_{ns}^{\pm} = P_{qq}^{\nu} \pm P_{q\bar{q}}^{\nu}$$

 $P_{ns}^{\nu} = P_{qq}^{\nu} - P_{q\bar{q}}^{\nu} + n_f (P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$
@NLO $P_{qq}^{S} = P_{q\bar{q}}^{S}$
 $P_{ns}^{\nu} = P_{ns}^{-}$

SINGLET

DIS 2016

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

berhard Karls Universität Tübingen The splitting functions are accordingly separated in the singlet and non-singlet sectors

NON-SINGLET
$$P_{ns}^{\pm} = P_{qq}^{v} \pm P_{q\bar{q}}^{v}$$

 $P_{ns}^{v} = P_{qq}^{v} - P_{q\bar{q}}^{v} + n_{f}(P_{qq}^{s} - P_{q\bar{q}}^{s}) \equiv P_{ns}^{-} + P_{ns}^{s}$
@NNLO
Responsable for s, \bar{s} asymmetry
 $[s - \bar{s}](x, Q^{2}) \neq 0$
German, Catani,
de Florian, Vogelsang
(arXiv:hep-ph/0406338)

SINGLET

DIS 2016

$$P_{qq} = P_{ns}^{+} + n_f (P_{qq}^{s} + P_{\bar{q}q}^{s}) \equiv P_{ns}^{+} + P_{ps}$$
$$P_{gq} \equiv P_{gq_i} = P_{g\bar{q}_i}$$
$$P_{qg} \equiv n_f P_{q_ig} = n_f P_{\bar{q}_ig}$$

15

hard Karls Universität Tübingen THE GOAL

DIS 2016

THE SOLUTION

We can solve the integro-differential DGLAP equation analytically in Mellin space at each fixed order since it becomes an Ordinary Differential Equation

$$\begin{aligned} \frac{\partial \boldsymbol{q}(N, a_{\rm s})}{\partial a_{\rm s}} &= \{\beta_{\rm N^mLO}(a_{\rm s})\}^{-1} \boldsymbol{P}_{\rm N^mLO}(N, a_{\rm s}) \, \boldsymbol{q}(N, a_{\rm s}) \\ &= -\frac{1}{\beta_0 a_{\rm s}} \left[\boldsymbol{P}^{(0)}(N) + a_{\rm s} \left(\boldsymbol{P}^{(1)}(N) - b_1 \boldsymbol{P}^{(0)}(N) \right) \\ &+ a_{\rm s}^2 \left(\boldsymbol{P}^{(2)}(N) - b_1 \boldsymbol{P}^{(1)}(N) + (b_1^2 - b_2) \boldsymbol{P}^{(0)}(N) \right) + \dots \right] \, \boldsymbol{q}(N, a_{\rm s}) \\ &f(N, \alpha_s) = \int_0^1 dy \, y^{N-1} f(y, \alpha_s) \qquad N \in \mathbb{C} \end{aligned}$$

where here $P(N, \alpha_S)$ and $q(N, \alpha_S)$ are the Mellin-Transform of either singlet or non-singlet splitting function and FF respectively

the general solution can be expressed in terms of the evolution matrices U (constructed from the splitting functions) as a simple multiplication

$$q(N, a_{s}) = U(N, a_{s}) L(N, a_{s}, a_{0}) U^{-1}(N, a_{0}) q(N, a_{0})$$

= $\left[1 + \sum_{k=1}^{\infty} a_{s}^{k} U_{k}(N)\right] L(a_{s}, a_{0}, N) \left[1 + \sum_{k=1}^{\infty} a_{0}^{k} U_{k}(N)\right]^{-1} q(a_{0}, N)$

where *L* is defined by the LO solution

DIS 2016

$$q_{LO}(N, a_{s}, N) = \left(\frac{a_{s}}{a_{0}}\right)^{-R_{0}(N)} q(N, a_{0}) \equiv L(N, a_{s}, a_{0}) q(N, a_{0})$$

 $R_{0} \equiv \frac{1}{\beta_{0}} P^{(0)}$

17

berhard Karls Universität Tübingen

Improving the Fit

TRUNCATED AND ITERATED Solution

Since both β_{N^mLO} and P_{N^mLO} have an expansion in powers of α_s there are different ways of defining the N^mLO solution

$$\begin{split} \boldsymbol{q}_{\mathrm{N^3LO}}(a_{\mathrm{s}}) &= \left[\, \boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_1 \, \boldsymbol{L} - a_0 \, \boldsymbol{L} \, \boldsymbol{U}_1 \\ &+ a_{\mathrm{s}}^2 \, \boldsymbol{U}_2 \, \boldsymbol{L} - a_{\mathrm{s}} a_0 \, \boldsymbol{U}_1 \, \boldsymbol{L} \, \boldsymbol{U}_1 + a_0^2 \, \boldsymbol{L} \left(\, \boldsymbol{U}_1^2 - \, \boldsymbol{U}_2 \right) \\ &+ a_{\mathrm{s}}^3 \, \boldsymbol{U}_3 \, \boldsymbol{L} - a_{\mathrm{s}}^2 a_0 \, \boldsymbol{U}_2 \, \boldsymbol{L} \, \boldsymbol{U}_1 + a_{\mathrm{s}} a_0^2 \, \boldsymbol{U}_1 \, \boldsymbol{L} \left(\, \boldsymbol{U}_1^2 - \, \boldsymbol{U}_2 \right) \\ &- a_0^3 \, \boldsymbol{L} \left(\, \boldsymbol{U}_1^3 - \, \boldsymbol{U}_1 \, \boldsymbol{U}_2 - \, \boldsymbol{U}_1 \, \boldsymbol{U}_2 + \, \boldsymbol{U}_3 \right) \, \right] \, \boldsymbol{q}(a_0) \end{split}$$

$$egin{aligned} m{R}_0 &\equiv rac{1}{eta_0} m{P}^{T,(0)} \;, \;\; m{R}_k &\equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} \;, \ &[m{U}_k, m{R}_0] &= m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k \;. \end{aligned}$$

berhard Karls Universität Tübingen

TRUNCATED AND ITERATED Solution

TRUNCATED: Keep only terms up to α_s^m in the solution

$$\begin{aligned} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \left[\boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \boldsymbol{U}_{3} \right) \right] \boldsymbol{q}(a_{0}) \end{aligned}$$

$$m{R}_0 \equiv rac{1}{eta_0} m{P}^{T,(0)} , \ \ m{R}_k \equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} , \quad [m{U}_k, m{R}_0] = m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k .$$

19

- It solves the equation exactly only up to terms of order n > m

berhard Karls Universität Tübingen

Improving the Fit

Universität

TRUNCATED AND ITERATED Solution

ITERATED: Keep the all the m-terms generated from $\,eta_{
m N^mLO}\,$ and $m P_{
m N^mLO}\,$

$$\begin{aligned} \boldsymbol{q}_{\mathrm{N}^{3}\mathrm{LO}}(a_{\mathrm{s}}) &= \left[\boldsymbol{L} + a_{\mathrm{s}} \, \boldsymbol{U}_{1} \, \boldsymbol{L} - a_{0} \, \boldsymbol{L} \, \boldsymbol{U}_{1} \\ &+ a_{\mathrm{s}}^{2} \, \boldsymbol{U}_{2} \, \boldsymbol{L} - a_{\mathrm{s}} a_{0} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{0}^{2} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &+ a_{\mathrm{s}}^{3} \, \boldsymbol{U}_{3} \, \boldsymbol{L} - a_{\mathrm{s}}^{2} a_{0} \, \boldsymbol{U}_{2} \, \boldsymbol{L} \, \boldsymbol{U}_{1} + a_{\mathrm{s}} a_{0}^{2} \, \boldsymbol{U}_{1} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{2} - \boldsymbol{U}_{2} \right) \\ &- a_{0}^{3} \, \boldsymbol{L} \left(\boldsymbol{U}_{1}^{3} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} - \boldsymbol{U}_{1} \, \boldsymbol{U}_{2} + \boldsymbol{U}_{3} \right) \right] \boldsymbol{q}(a_{0}) \end{aligned}$$

$$\boldsymbol{R}_{0} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{T,(0)} , \quad \boldsymbol{R}_{k} \equiv \frac{1}{\beta_{0}} \boldsymbol{P}^{T,(k)} - \sum_{i=1}^{k} b_{i} \boldsymbol{R}_{k-i} , \quad [\boldsymbol{U}_{k}, \boldsymbol{R}_{0}] = \boldsymbol{R}_{k} + \sum_{i=1}^{k-1} \boldsymbol{R}_{k-1} \boldsymbol{U}_{i} + k \boldsymbol{U}_{k} .$$

20

- It corresponds to the solution done in x-Space

DIS 2016

- It introduces more higher order scheme-dependent terms

TRUNCATED AND ITERATED Solution

ITERATED-TRUNCATED = theoretical uncertainty of order $O(\alpha_s^{m+1})$

21

berhard Karls Universität Tübingen

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- Our E+E- NNLO Fit
- IMPROVING: SMALL-Z RESUMMATION
- CONCLUSIONS & OUTLOOK

OUR SIA FIT

Hadron multiplicities

IMPROVING THE FIT

where

$$x_E \equiv \frac{2P_h \cdot q}{Q^2}$$

 $\frac{d^2 \sigma^h}{dx_E d \cos \theta} = \frac{\pi \alpha^2}{Q^2} N_C \left[\frac{1 + \cos^2 \theta}{2} \mathcal{F}_T^h(x_E, Q^2) + \sin^2 \theta \, \mathcal{F}_L^h(x_E, Q^2) \right] \quad \text{Nason, Webber; Furmanski, Petronzio}$

where
Structure Functions
$$\mathcal{F}_{i}^{h}(x_{E},Q^{2}) = \sum_{f} \int_{x_{E}}^{1} \frac{d\hat{z}}{\hat{z}} D_{f}^{h}\left(\frac{x_{E}}{\hat{z}},\mu^{2}\right) \mathcal{C}_{f}^{i}\left(\hat{z},\frac{Q^{2}}{\mu^{2}},\alpha_{s}(\mu^{2})\right)$$

23

DIS 2016

Eberhard Karls Universität Tübingen

UNIVERSITAT

ÜBINGEN

Our SIA Fit

Parametrization of light patrons FF @ μ_0

$$D_{i}^{h}(z,Q_{0}) = \frac{N_{i}z^{\alpha_{i}}(1-z)^{\beta_{i}}[1+\gamma_{i}(1-z)^{\delta_{i}}]}{B[2+\alpha_{i},\beta_{i}+1]+\gamma_{i}B[2+\alpha_{i},\beta_{i}+\delta_{i}+1]}$$

So that $N_{i} = \int_{0}^{1} z D_{i}^{h} dz$

Heavy Quark Treatment:

NON PERTURBATIVE INPUT: at $\mu > m_q$ the evolution is set to evolve with n_f+1 for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu = m_q$

Data sets:

I 5 Data Set: from SId, Aleph, Delphi, Opal, Tpc, BaBar, Belle either inclusive, uds tagged, b tagged or c tagged. We use a GLOBAL CUT 0.075<z<0.95</p>

DIS 2016

PARAMETERS FOR PI+

With only SIA one needs some extra constrains:

parameter	LO	NLO	NNLO	
$N_{u+\bar{u}}$	0.735	0.572	0.579	5 free param needed
$lpha_{u+ar{u}}$	-0.371	-0.705	-0.913	
$eta_{u+ar{u}}$	0.953	0.816	0.865	charge conjugation and isospin
$\gamma_{u+ar{u}}$	8.123	5.553	4.062	symmetry $D^{\pi^{\pm}} = D^{\pi^{\pm}}$.
$\delta_{u+ar{u}}$	3.854	1.968	1.775	u+u $d+d$,
$\overline{N_{s+\bar{s}}}$	0.243	0.135	0.271	I free param 2 fixed by
$lpha_{s+ar{s}}$	-0.371	-0.705	-0.913	Thee param, 2 miled by
$eta_{s+ar{s}}$	4.807	2.784	2.640	$\alpha_{s+\bar{s}} = \alpha_{u+\bar{u}}, \beta_{s+\bar{s}} = \beta_{u+\bar{u}} + \delta_{u+\bar{u}}$
N_g	0.273	0.211	0.174	
$lpha_g$	2.414	2.210	1.595	2 free param. I fixed
eta_{g}	8.000	8.000	8.000	
$\overline{N_{c+ar{c}}}$	0.405	0.302	0.338	
$lpha_{c+ar{c}}$	-0.164	-0.026	-0.233	3 free param
$eta_{c+ar{c}}$	5.114	6.862	6.564	
$\overline{N_{b+ar{b}}}$	0.462	0.405	0.445	
$lpha_{b+ar{b}}$	-0.090	-0.411	-0.695	F (
$eta_{b+ar{b}}$	4.301	4.039	3.681	5 free param
$\gamma_{b+ar{b}}$	24.85	15.80	11.22	-
$\delta_{b+ar{b}}$	12.25	11.27	9.908	TOT = 16 free a series
				$I \cup I = I b$ tree param

Tübingen

UNIVERSITÄT

berhard Karls Universität Tübingen

UNIVERSITÄT

Tübingen

Scale Dependence

e+ e- μ scale dependance

DIS 2016

experiment	data	# data	χ^2			
	type	in fit	LO	NLO	NNLO	
Sld [40]	incl.	23	15.0	14.8	15.5	
	$uds ext{ tag}$	14	9.7	18.7	18.8	
	c ag	14	10.4	21.0	20.4	
	$b ag{tag}$	14	5.9	7.1	8.4	
Aleph $[41]$	incl.	17	19.2	12.8	12.6	
Delphi [42]	incl.	15	7.4	9.0	9.9	
	$uds ext{ tag}$	15	8.3	3.8	4.3	
	$b ag{tag}$	15	8.5	4.5	4.0	
Opal $[43]$	incl.	13	8.9	4.9	4.8	
TPC $[44]$	incl.	13	5.3	6.0	6.9	
	$uds ext{ tag}$	6	1.9	2.1	1.7	
	$c ext{ tag}$	6	4.0	4.5	4.1	
	$b \mathrm{tag}$	6	8.6	8.8	8.6	
BABAR $[10]$	incl.	41	108.7	54.3	37.1	>
Belle [9]	incl.	76	11.8	10.9	11.0	
TOTAL:		288	241.0	190.0	175.2	

28

berhard Karls Universität Tübingen

IMPROVING THE FIT

 $\chi^2 COMPARISON$

Accardi, Anderle, Ringer (Phys.Rev. D91 (2015) 3, 034008)

Universität Tübingen

OUTLINE

- ' GOAL
- TIME-LIKE EVOLUTION
- Our E+E- NNLO Fit
- IMPROVING: SMALL-Z RESUMMATION

31

CONCLUSIONS & OUTLOOK

SMALL-Z LOGARITHMS (SIA)

N^kLO Small-z Logarithms in Splitting Functions and Singlet Coefficient Functions

Double Log Enhancement spoils perturbative convergence even for $\alpha_s \ll 1$

DIS 2016

$$P_{ij}^{(k-1)} \propto a_s^k \frac{\ln^{2k-1-a}(z)}{z}$$

$$C_{T,i}^{(k)} \propto a_s^k \frac{\ln^{2k-1-a}(z)}{z}$$

$$C_{L,i}^{(k)} \propto a_s^k \frac{\ln^{2k-2-a}(z)}{z}$$

$$a = 1, 2, 3 \qquad i, j \in \{q, g\}$$

In Mellin Space they correspond to N = I Poles
$$\mathcal{M}\left[\frac{\ln^{2k-1}(z)}{z}\right] \equiv \int_0^1 dx \, x^{N-1} \frac{\ln^{2k-1}(z)}{z} = \frac{(-1)^k (2k-1)!}{(N-1)^{2k}}$$

32

Eberhard Karls Universitä Tübingen

RESUMMATION ACCURACY

For example P_{gg} with $N-1=\bar{N}$

DIS 2016

Re	Fixed Orde	r						
sumr	LO	$lpha_s/ar{N}$	$lpha_s$					
natic	NLO	$lpha_s/ar{N}^3$	$lpha_s/ar{N}^2$	$lpha_s/ar{N}$	$lpha_s$			
on	NNLO	$lpha_s/ar{N}^5$	α_s/\bar{N}^4	$lpha_s/ar{N}^3$	α_s/\bar{N}^2	$lpha_s/ar{N}$	$lpha_s$	
	•••			•••	•••	•••		
	N ^{k-1} LO	α_s/\bar{N}^{2k-1}	α_s/\bar{N}^{2k-2}	α_s/\bar{N}^{2k-3}	α_s/\bar{N}^{2k-4}	α_s/\bar{N}^{2k-5}	•••	
	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓							

RESUMMATION VIA UNFACTORIZED SIA Van Neerven, Rijken (1996) Vogt (2011), Kom, Vogt, Yeats(2012)

One can proceed by using "all-order" mass factorization: e.g.

A) starting from the unfactorized gluon singlet transversal parton structure function in dimensional regularisation (IR-singularities not yet factorized out and "re-absorbed" in FF)

 $\hat{\mathcal{F}}_{g}^{T}(N, a_{s}, \epsilon) = \sum_{i=q,g} \left[\bar{C}_{i}^{T}(N, a_{s}, \epsilon) \right] \Gamma_{ig}^{N}(N, a_{s}, \epsilon)$

D-Dimensional coef. function: only positive powers of ϵ

DIS 2016

$$\bar{C}_i^T(N, a_s, \epsilon) = \delta_{iq} + \sum_{l=1}^{\infty} a_s^l \sum_{k=0}^{\infty} \epsilon^k c_{T,i}^{(l,k)}(N)$$

Transition function: incorporates all IR $1/\epsilon$ poles, calculable order by order as a combination of splitting functions

$$\beta_D(a_s) \; \frac{\partial \Gamma_{ik}}{\partial a_s} \; \Gamma_{kj}^{-1} = P_{ij}$$

überhard Karls Universitä Tübingen

EBERHARD KARI

B) "Plug-in" the small $\bar{N} = N - 1$ limit for known fixed order coefficient functions and splitting functions (e.g. NNLO)

OUR FIT

C) Impose equality order by order in a_s with the small $\bar{N} = N - 1$ limit for the unfactorized structure function which reads

35

E) From the coefficient of the small N expansion deduct closed form

IMPROVING THE FIT

 P_{gg}

 P_{gg}

 C_g^T

THE TIME-LIKE EVOLUTION

OUR FIT

Resummed solution for evolution

If N^mLL accuracy then for k > m $P^{T,(k)} = P^{T,\mathrm{resum}}|_{a_s^k}$

$$q(N, a_{s}) = U(N, a_{s}) L(N, a_{s}, a_{0}) U^{-1}(N, a_{0}) q(N, a_{0})$$

= $\left[1 + \sum_{k=1}^{\infty} a_{s}^{k} U_{k}(N)\right] L(a_{s}, a_{0}, N) \left[1 + \sum_{k=1}^{\infty} a_{0}^{k} U_{k}(N)\right]^{-1} q(a_{0}, N)$

$$m{R}_0 \equiv rac{1}{eta_0} m{P}^{T,(0)} , \ \ m{R}_k \equiv rac{1}{eta_0} m{P}^{T,(k)} - \sum_{i=1}^k b_i m{R}_{k-i} , \ [m{U}_k, m{R}_0] = m{R}_k + \sum_{i=1}^{k-1} m{R}_{k-1} m{U}_i + k m{U}_k .$$

40

überhard Karls Universität Tübingen

HOW MANY TERMS?

41

DIS 2016

Eberhard Karls Universität Tübingen

CONCLUSIONS & OUTLOOK

OUR FIT

- We have performed a NNLO fit for SIA exploring the new features appearing @ NNLO.
- At NNLO it is clear that the extreme phase space regions are better described and that more of the small z and large z logs are taken into account
- We are working on a resummed version of our fit and looking to extend our analysis to an approximate NNLO global fit using expanded NLL results
- One other goal is to extend the small-z resummtion to the scale dependence in the coefficient functions

THANKS FOR YOUR ATTENTION Any questions?

No interplay between the two effects is found since they act independently on two different kinematical regions

Eberhard Karls Universität Tübingen

44

DIS 2016

45

Eberhard Karls Universität Tübingen

DIS 2016

47

Eberhard Karls Universität Tübingen THE GOAL

Improving the Fit

NNLO E+E- WITH "PEGASUS_FF"

DIS 2016

berhard Karls Universität Tübingen

Universität

Tübingen

NNLO E+E- WITH "PEGASUS_FF"

OUR FIT

e+ e- μ scale dependance

DIS 2016

OUR FIT

DIS 2016

$$\begin{split} \begin{split} \frac{T_k^h}{z} &= \sigma_{\text{tot}}^{(0)} \bigg[D_{\text{S}}^h(z,\mu^2) \otimes \mathbb{C}_{k,q}^{\text{S}} \left(z, \frac{Q^2}{\mu^2} \right) \\ &+ D_g^h \left(z, \mu^2 \right) \otimes \mathbb{C}_{k,g}^{\text{S}} \left(z, \frac{Q^2}{\mu^2} \right) \bigg] \\ &+ \sum_q \sigma_q^{(0)} D_{\text{NS},q}^h(z,\mu^2) \otimes \mathbb{C}_{k,q}^{\text{NS}} \left(z, \frac{Q^2}{\mu^2} \right) \end{split}$$

Eberhard Karls Universität Tübingen

THE NNLO EVOLUTION CODE "PEGASUS_FF"

Existing NNLO Evolution CODES:

- X-SPACE APFEL(time-like version C/C++, Fortran77, Python) Bertonel, Carrazza, Rojo (CERN-PH-TH/2013-209)
- Mellin SPACE MELA(Fortran77) Bertone I, Carrazza, Nocera (CERN-PH-TH-2014-265)

Newly born:

Mellin SPACEPegasus_FF (Fortran77)based on Pegasus(Fortran77)Anderle, Ringer, StratmannVogt (Comput.Phys.Commun.170:65-92,2005)

"PEGASUS_FF": HEAVY FLAVOURS

Parametrization of light patrons FF @ μ_0

$$D_{i}^{h}(z,Q_{0}) = \frac{N_{i}z^{\alpha_{i}}(1-z)^{\beta_{i}}[1+\gamma_{i}(1-z)^{\delta_{i}}]}{B[2+\alpha_{i},\beta_{i}+1]+\gamma_{i}B[2+\alpha_{i},\beta_{i}+\delta_{i}+1]}$$

So that $N_{i} = \int_{0}^{1} z D_{i}^{h} dz$

"Pegasus_FF" OPTIONS

DIS 2016

FIXED FLAVOUR SCHEME: the evolution is done for a fixed number of flavours for which the initial-scale functional form corresponds to the above one

NON PERTURBATIVE INPUT: at $\mu > m_q$ the evolution is set to evolve with $n_f + 1$ for flavours and for the q-heavy quark FF the same functional form as for the light quark is set at $\mu = m_q$

VARIABLE FLAVOUR SCHEME: at $\mu > m_q$ the evolution is set for $n_f + 1$ flavours and the q-heavy quark FF is fixed by matching-conditions at $\mu = m_q$

Universităt

Tübingen

"PEGASUS_FF": HEAVY FLAVOURS

MATCHING CONDITION: computed by imposing the equality between the massive calculation and the massless (MS-bar) calculated cross section @ $\mu_f=m_q$

COMPUTED ONLY up to NLO: Cacciari, Nason, Oleari (JHEP 0510:034,2005)

$$D_{h/\bar{h}}^{(n)}(x,\mu) = \int_{x}^{1} \frac{dy}{y} D_{g}(x/y,\mu) \times \frac{\alpha_{\rm s}}{2\pi} C_{\rm F} \frac{1+(1-y)^{2}}{y} \left[\log \frac{\mu^{2}}{m^{2}} - 1 - 2\log y \right]$$
$$D_{g}^{(n)}(x,\mu) = D_{g}^{(n_{\rm L})}(x,\mu) \left(1 - \frac{T_{\rm F}\alpha_{\rm s}}{3\pi} \log \frac{\mu^{2}}{m^{2}} \right)$$
$$D_{i/\bar{i}}^{(n)}(x,\mu) = D_{i/\bar{i}}^{(n_{\rm L})}(x,\mu) \qquad \text{for } i = q_{1}, \dots, q_{n_{\rm L}}$$
$$n_{L} = n_{f} + 1$$

53

DIS 2016

Towards a Global NNLO FF Fit

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻ → x-Space Mellin-Space

DIS 2016

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

SIDIS \longrightarrow NOT COMPUTED YET but work in progress $\gamma q' \rightarrow q \bar{q} q'$ $\gamma q' \rightarrow q \bar{q} q'$ Anderle, de Florian, Rotstein, Vogelsang

SI- p(anti-)p ----> NOT COMPUTED YET

Towards a Global NNLO FF Fit

Ingredients needed to achieve the goal:

NNLO COEFFICINT FUNCTIONS:

SI-e⁺e⁻

DIS 2016

Rijken, van Neerven

(Phys.Lett.B386(1996)422, Nucl.Phys.B488(1997)233, Phys.Lett.B392(1997)207)

Mitov, Moch (Nucl.Phys.B751 (2006) 18-52) Blümlein, Ravindran (Nucl.Phys.B749 (2006) 1-24)

② NNLO Harmonic PolyLogs(HPL) appear in the coefficient functions

Calculation of Mellin moments non trivial

Improving the Fit

Towards a Global NNLO FF Fit

@NLO the moments of the coefficient functions contain at worst SINGLE HARMONIC SUMS, which can be consistently continued in the complex plane

$$S_k(N) = (-1)^{k-1} \frac{1}{(k-1)!} \psi^{(k-1)}(N+1) + c_k^+$$

$$S_{-k}(N) = (-1)^{k-1+N} \frac{1}{(k-1)!} \beta^{(k-1)}(N+1) - c_k^-$$

 $\psi(z)$ first derivative of Gamma Function

$$\begin{aligned} \beta(z) &= \frac{1}{2} \left[\psi \left(\frac{z+1}{2} \right) - \psi \left(\frac{z}{2} \right) \right] \\ c_1^+ &= \gamma_E \\ c_k^+ &= \zeta(k), \quad k \ge 2 \\ c_1^- &= \log(2) \\ c_k^+ &= \left(1 - \frac{1}{2^{k-1}} \right) \zeta(k), \quad k \ge 2 \end{aligned}$$

56

berhard Karls Universität Tübingen

Towards a Global NNLO FF Fit

$$S_{k_1,\dots,k_m}(N) = \sum_{n_1=1}^{N} \frac{\left[\operatorname{sign}(k_1)\right]^{n_1}}{n_1^{|k_1|}} \sum_{n_2=1}^{n_1} \frac{\left[\operatorname{sign}(k_2)\right]^{n_2}}{n_2^{|k_2|}} \dots \sum_{n_m=1}^{n_{m-1}} \frac{\left[\operatorname{sign}(k_m)\right]^{n_m}}{n_m^{|k_m|}}$$

ANALITICAL CONTINUATIONS: provided by Blümlein,Kurth(Phys. Rev. D60 (1999) 014018) also as FORTRAN77 routines Blümlein(Comput. Phys. Commun. 133 (2000) 76))

THRESHOLD RESUMMATION

For both DIS and SIA

in Mellin space: exponentiation of the one-loop results

$$\mathcal{C}_{q}^{T,res} \propto ~ \exp\left[\int_{0}^{1} d\xi \frac{\xi^{N}-1}{1-\xi} \times \left\{\int_{Q^{2}}^{(1-\xi)Q^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} A_{q}(lpha_{s}(k_{\perp}^{2})) + \frac{1}{2}B_{q}\left(lpha_{s}((1-\xi)Q^{2})
ight)
ight\}
ight]$$

where
$$A^{(1)} = C_F$$
, $A^{(2)} = \frac{1}{2}C_F K = \frac{1}{2}C_F \left[C_A \left(\frac{67}{18} - \frac{\pi^2}{6}\right) - \frac{5}{9}N_f\right]$
 $B^{(1)} = -\frac{3}{2}C_F$.

Catani, Trentadue; Stermann

Threshold Resummation acts for DIS and SIA in the same exact way and is relevant for the same Phase Space region:

59

berhard Karls Universität Tübingen

Towards a Global NNLO FF Fit

We have checked the Mellin moments calculation and the consistency between Mitov, Moch and Blümlein, Ravindran notation

NUMERICALLY and ANALITICALLY: making use of

- "HPL"-Mathematica package, D. Maître (Comput. Phys. Commun. 174 (2006) 222-240)
- "MT"-Mathematica package, Hoeschele, Hoff, Pak, Steinhauser, Ueda (arXiv:1307.6925)

THE GOAL

IMPROVING THE FIT

NLO COEFFICIENT FUNCTION (SIA)

large corrections near threshold $\hat{z} \rightarrow 1$

DIS 2016

$$\hat{C}_q^{T,(1)} \sim e_q^2 C_F \left[2 \left(\frac{\log\left(1 - \hat{z}\right)}{1 - \hat{z}} \right)_+ - \frac{3}{2} \frac{1}{\left(1 - \hat{z}\right)}_+ + \left(\frac{2\pi^2}{3} - \frac{9}{2} \right) \delta(1 - \hat{z}) \right]$$

$$\overline{\text{MS scheme}}$$

Altarelli et al.; Furmanski, Petronzio; Nason, Webber...

$$\int_0^1 dz \, f(z) \, \left(\frac{\ln(1-z)}{1-z}\right)_+ \, \equiv \, \int_0^1 dz \, (f(z) - f(1)) \, \frac{\ln(1-z)}{1-z}$$

Eberhard Karls Universität Tübingen

For Pions HMC is irrelevant

64

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

berhard Karls Universität Tübingen

For Pions HMC is irrelevant

65

Belle collaboration arXiv: 1301.6183; BaBar collaboration arXiv: 1306.2895

berhard Karls Universität Tübingen

The hadron mass acts kinematically on the two processes in a very different way

RESUMMATION AND HMC INTERPLAY (DIS)

Taking into account momentum conservation law and some simple algebra

we find that the partonic momentum fraction \hat{x} is limited as

$$\xi \le \hat{x} = \frac{k^+}{P_h^+} \le \xi/x_B$$

67

Eberhard Karls Universität Tübingen In the definition of the structure functions the integration limits need to be modified

$$\mathcal{F}_i(\xi, Q^2) = \sum_f \int_{\boldsymbol{\xi}}^{\boldsymbol{\xi}/\boldsymbol{x}_B} \frac{d\hat{x}}{\hat{x}} f(\hat{x}) \, \mathcal{C}_f^i\!\left(\frac{\boldsymbol{\xi}}{\hat{x}}, Q^2\right)$$

Accardi and Qiu(JHEP 0807:090,2008)

This effects also Threshold Resummation correction

In order to be able to perform the Mellin Transform properly be able to use the resumption formula, we have to define

$$\mathcal{F}_{1}^{\text{TMC},N} = \int_{0}^{1} d\xi \,\xi^{N-1} \int_{\xi}^{\xi_{\text{th}}} \frac{dx}{x} \mathcal{C}_{f}^{1}\left(\frac{\xi}{x}\right) f(x)$$

$$= \int_{0}^{1} d\xi \,\xi^{N-1} \int_{0}^{1} dy \int_{0}^{\xi_{\text{th}}} dx \,\mathcal{C}_{f}^{1}(y) \,f(x) \,\delta(xy-\xi)$$

$$= \left(\int_{0}^{1} dy \,y^{N-1} \mathcal{C}_{f}^{1}(y)\right) \left(\int_{0}^{\xi_{\text{th}}} dx \,x^{N-1} f(x)\right)$$

$$= \mathcal{C}_{f}^{1,N} \,f_{\xi_{\text{th}}}^{N}$$

Truncated-Moments of PDF

ξ

Integration support

threshold logs excluded from integration

For DIS the TMC and Threshold Resummation do not act independently

- RESU+TMC+HT
 JLab (E94–110)
 JLab (E00–116)
- HERA
- SLAC
- ▲ EMC

F.Aaron et al. (H1 and ZEUS Collaboration), JHEP 1001, 109 (2010), hep-ex/0911.0884.
L.Whitlow, E. Riordan, S. Dasu, S. Rock, and A. Bodek, Phys.Lett. B282, 475 (1992).
J.Aubert et al. (European Muon Collaboration), Nucl.Phys. B259, 189 (1985)
Y. Liang et al. (Jefferson Lab Hall C E94-110 Collaboration) (2004), nucl-ex/0410027.
S. Malace et al. (Jefferson Lab E00-115 Collaboration), Phys.Rev. C80, 035207 (2009), nucl-ex/ 0905.2374

with CJ PDF Owens, Accardi, Melnitchouk (Phys.Rev. D87, 094012 (2013))