

Double parton scattering results from CMS Gilvan A. Alves - Lafex/CBPF for the CMS collaboration

Gi<u>ivan A. Alves</u>

The setting:CMS@LHC

- High energy and high luminosity
 - Allows high statistics precision measurements, and sensitivity to "rare" processes (hard diffraction, exclusive production)
 - But high luminosity comes with high "pileup" – average 2-8 in 2010/2011, 21 in 2012
 - Low pileup helps in some analysis

- Good detector coverage
 - Tracking to $|\eta| < 2.4$
 - Hadronic calorimeter (HF) to |η| < 5
 - Forward calorimeters (cover -6.6< η< -5.2 (CASTOR) and $|\eta| > 8.1$ (ZDC)

14/04/2016

- Studying the Underlying Event and DPS at LHC
- DPS using
 - γ + 3 Jets
 - Same sign W pair production
 - 2b jets + 2 jets events
- Many other interesting results not covered here
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ</u>

Studying the Underlying Event and DPS at LHC

Gilvan A. Alves

14/04/2016

4

Underlying Event and DPS

- Studying the UE is crucial for understanding background for BSM searches
- UE has several components:
 - Initial and final state radiation
 - Beam Beam remnants
 - Multiple Parton Interactions (MPI)
 - Some MPI can be hard
 - Double Parton Scattering (DPS)

$$\sigma_{AB}^{DPS} = \frac{m\sigma_A\sigma_B}{2\sigma_{eff}}$$

σ_{eff}- effective area parameter m = 1 for same type processes m = 2 otherwise

More CMS results on Ada Solano talk this morning

Gilvan A. Alves

14/04/2016

DPS Measurements

- DPS has been measured at several energies (from 63 GeV up to 7 TeV)
 - Results for σ_{eff} are mostly compatible
- CMS published results using
 - W + 2 jet events JHEP 03 (2014) 032
 - 4 jet events PRD 89 (2014) 092010
- New studies using:
 - γ + 3 jet events
 - Same sign W pair production events
 - 2b jets + 2 jets events

DPS in γ + 3 Jet events CMS-PAS-FSQ-12-017

- 7 TeV Low pileup data (2010) 36 pb⁻¹
- γ + Leading jet p_T > 75 GeV
 - Other jets p_T > 20 GeV
- Discriminating variables
- $\Delta \phi_{23} = \phi_{jet_2} \phi_{jet_3}$ $\Delta^{rel}_{pT_{23}} = \frac{|\vec{p}_{T jet_2} + \vec{p}_{T jet_3}|}{|\vec{p}_{T jet_2}| + |\vec{p}_{T jet_3}|}$
- $\Delta S = pair azimuthal angle$
- Distinguishable at gen level (PYTHIA8 4C)

DPS in γ + 3 Jet events

1.5

0.5

2.5

 $\Delta \phi_{23}$ (rad)

Matrix element
(MADGRAPH5,
SHERPA2.1.0)
combined with
Parton shower
(PYTHIA6, PYTHIA8)
with several tunes,
show sizeable
differences

0.2

0.4

0.6

0.8

 $\Delta^{rel}p_{T,23}$

1.5

0.5

2.5

∆S (rad)

Results γ + 3 Jet events

- Matrix element (MADGRAPH₅, SHERPA_{2.1.0}) + PS (PYTHIA6, PYTHIA8) show similar results With/Without MPI
 - Need to improve sensitivity
- Lowering p_T thresholds

Same sign W pair production CMS-PAS-FSQ-13-001

- Pro
- Clean signature
- No jets
- No lepton correlation
 W from SPS boosted
- $\sigma_{\text{DPS}} \approx \sigma_{\text{SPS}}$
- Con
- Very small $\sigma_{\text{DPS}} \approx 5 \text{ fb}$ Limits only

14/04/2016

Same sign W pair production

- 8 TeV data (2012) 19.7 fb⁻¹
- 2 same sign μ p_T > 20 GeV (p_T > 10 GeV 2nd μ)
 - Veto 3rd μ p_T > 10 GeV
- □ Σp_{Tµ} > 45 GeV
- E_T^{miss} > 20 GeV >reduce QCD background
- 20 < $M_{\mu\mu}$ < 75 GeV or $M_{\mu\mu}$ > 105 GeV -> Z mass peak
- PYTHIA8 4C (DPS)
- MADGRAPH5 + PYTHIA6.4.25 Z* (SPS + DY)
- PYTHIA6.4.25 Z* (ZZ+WZ)
- QCD background -> Data driven (low p_T μ from decays)

- Use BDT to discriminate DPS
- BDT variables:
 - P_T of both μ
 - E_T^{miss}
 - Dimuon transverse mass
 - Δφ(μ,μ)
 - $\Delta \phi(\mu, E_T^{miss})$
 - $\Delta \phi(\mu \mu, E_T^{miss})$
 - W transverse mass

Results Same sign W pair

BDT discriminant and yields

Sample	Events \pm stat. \pm syst.
DPS	$15.0 \pm 0.5 \pm 0.7$
SPS	$30 \pm 1 \pm 3$
WZ	$263 \pm 3 \pm 30$
ZZ	$40 \pm 1 \pm 2$
$W_{\gamma*}$	$86 \pm 3 \pm 9$
Prompt-Fake	$709 \pm 7 \pm 213$
Fake-Fake	$381 \pm 4 \pm 229$
Total	$1523 \pm 9 \pm 314$
Data	1539

🖉 Limit settings W pair

DPS in 2b jets + 2 jets CMS-PAS-FSQ-13-010

- 7T eV Low pileup data (2010) 3.03 pb⁻¹
- 4jets p_T > 20 GeV
 - 2 jets b-tagged (tracker |η| < 2.4)
 - 2 jets |η| < 4.7
- Discriminating variables
- $\Delta \phi = \phi_{jet_1} \phi_{jet_2}; \phi_{jet_3} \phi_{jet_4}$
- $\mathsf{S}\phi = \sqrt{(\Delta \phi_{\text{ljets}})^2 + (\Delta \phi_{\text{bjets}})^2}$
- $\Delta^{rel}_{pT} = p_T$ balance of pairs
- $S' p_T = \sqrt{(\Delta_{\text{bottom}}^{\text{rel}} p_T)^2 + (\Delta_{\text{light}}^{\text{rel}} p_T)^2}$
- $\Delta \eta_{\text{ljets}}$; $\Delta \eta_{\text{bjets}}$
- $\Delta S = pair azimuthal angle$

- MC samples PYTHIA6.426, PYTHIA8.185, HERWIG++2.5.0 (w and w/o MPI)
 - POWHEG+PYTHIA6Z2*, MADGRAPH5+PYTHIA6Z2*

DPS in 2b jets + 2 jets

Sample	PDF	Cross section (nb)
PYTHIA 6 Tune Z2*	CTEQ6L1	76.84
PYTHIA 6 Tune CUETP6S1	CTEQ6L1	76.66
HERWIG ++ Tune UE-EE-3	MRST2008**	43.78
HERWIG ++ Tune UE-EE-5-CTEQ6L1	CTEQ6L1	47.39
PYTHIA 8 Tune CUETP8S1-CTEQ6L1	CTEQ6L1	95.58
POWHEG +PYTHIA 6 Tune Z2*	CT10	77.96
POWHEG +PYTHIA 6 Tune Z2'	CT10	54.91
MADGRAPH +PYTHIA 6 Tune Z2*	CTEQ6L1	39.33
DATA	-	$64.6\pm2.4~(\text{stat.})\pm21.6~(\text{syst.})$

- Cross section predictions vary between models
- PYTHIA8 overestimate
- MADGRAPH & HERWIG++ underestimate
- Others do a reasonable job
- Data systematics dominated by unfolding and jet energy

DPS in 2b jets + 2 jets

3 pb⁻¹ (7 TeV), pp→ 2 b + 2 J + X

Δφ well described by all models

) dơ/d∆≬ ^{botian} [1/rad	CMS MADGRAPH-F5.2* 10 Preliminary 2 b-j: p _T > 20 GeV, η < 2.4 CUETP851-CTEQ6L1 2 j: p _T > 20 GeV, η < 4.7 CUETP851-CTEQ6L1 MPI off	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
(1/ 0)		
MC/data		
	C C C C C C C C C C C C C C C C C C C	d) مراجع المحل
/ a) da/dAn ^{battom}	10 ² 3 p0 ⁻⁺ (7 TeV), pp→ 2 b + 2] + X 10 ² CMS Preliminary POWHEG+PYTHIAS Z2 ⁺ 10 2 b-j: p _T > 20 GeV, η < 2.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(1		

3 pb⁻¹(7 TeV), pp→ 2 b + 2] + X

• $\Delta \eta_{\text{ljets}}$; $\Delta \eta_{\text{bjets}}$ not well described at high $\Delta \eta$

- Δ S not well described by all models
- HERWIG++ and PYTHIA8+MPI agree in some regions
- Better DPS implementations are needed

- Presented Recent studies on DPS at CMS/LHC
- Important to study the sensitivity of considered observables
 - Model dependence of predictions for backgrounds to DPS
- Double Parton Scattering needs better understanding for searches
 - Need for better MPI implementation on models
- CMS results provide new constraints for non-perturbative and semi-hard QCD dynamics on MC

Gilvan A. Alves

.4/04/2016

Motivation: DPS is important for understanding the partonic correlations and backgrounds for new physics.

- W+2jets advantages
 - Clean tag from W->muon decay
 - Large dijet cross section
- Measurement of σ_{eff}- effective area parameter, input to theoretical models

$$\sigma_{\rm eff} = \frac{\sigma'_{\rm W+0jet}}{\sigma'_{\rm W+2j}} \cdot \sigma'_{\rm 2j} \longrightarrow \sigma_{\rm eff} = \frac{R}{f_{\rm DPS}} \cdot \sigma'_{\rm 2j}$$

- *f*_{DPS} fraction of (W+2j)_{DPS} to all (W+2j)
 - From simultaneous fit to discr. variables
- R fraction of W+oj to W+2j events (from data)
- σ'_{2j}-di-jet cross section at particle level (data)

- Discriminate between SPS and DPS by studying:
 - transverse momentum balance of two jets (DPS around o) $\Delta_{rel} p_T$
 - azimuthal angle between W and di-jet system
 ΔS
- Fully-corrected data fitted with DPS and SPS templates (MC based, MADGRAPH5 + PYTHIA8)
- Extract f_{DPS}
- $f_{\text{DPS}} = 0.055 \pm 0.002 \text{ (stat)} \pm 0.014 \text{ (syst)}$

Gilvan A. Alves

$\sigma_{\rm eff} = 20.7 \pm 0.8 \, ({\rm stat.}) \pm 6.6 \, ({\rm syst.}) \, {\rm mb.}$

- Measurement consistent with ATLAS, CDF and Do results
- Large uncertainties, difficult to conclude on energy dependence of σ_{eff}
- PYTHIA8: σ_{eff} ~ 20-30 mb, tune dependent

4 Jet events

- 4 Jet events in SPS produced by QCD evolution
 - Good test for higher order QCD calculations and parton shower formalism
- DPS important in the low x region (large parton densities)
- SPS → strongly correlated jets
- DPS → uncorrelated
- Cross section agreement at high p_T
- Significant disagreement at lower p_T values and sub-leading jets

- Discriminating variables similar to W+2Jets
- POWHEG without MPI is far below data at lower discr. values
- SHERPA and PYTHIA8 give the best description
- Recent tune gives $\sigma_{eff} = 21.3^{+1.2}$ mb CMS PAS GEN 14-001

Luminosity and Pile-up

- The integrated luminosity (L) is based on the Van der Meer scans
- The uncertainty of the luminosity is 4%: dominates the systematic uncertainties of this analysis
- Number of collisions per bunch crossing follows Poisson
 Average λ (pile-up)

$$F_{\text{pileup}} = \frac{\sum_{i=1}^{\infty} iP(i,\lambda)}{\sum_{i=1}^{\infty} (1 - (1 - \epsilon_{\text{inel}})^i)P(i,\lambda)} \cdot \epsilon_{\text{inel}} = \frac{\epsilon_{\text{inel}}\lambda}{\sum_{i=1}^{\infty} (1 - (1 - \epsilon_{\text{inel}})^i)P(i,\lambda)} = 1 + \frac{1}{2}\lambda\epsilon_{\text{inel}} + \frac{1}{12}\lambda^2\epsilon_{\text{inel}}^2 + \mathcal{O}(\lambda^3)$$

 Correction factor – accounts for multiple collisions being counted as one.

Gilvan A. Alves

14/04/2016