

आभा परमाणु अनुसंधान केंद्र BHABHA ATOMIC RESEARCH CENTRE

Exclusive production at the CMS experiment

Ruchi Chudasama

On behalf of the CMS collaboration

DESY Hamburg, Germany

Outline

Pb

- Motivation
- Exclusive photoproduction of Upsilon in pPb collisions at √s = 5.02 TeV
 - estimate the t dependence of the cross-section
 - photonuclear cross-section

- → Exclusive production of massive electroweak boson pairs in pp collisions at $\sqrt{s} = 7$ and 8 TeV
 - Search for exclusive $\gamma \gamma \rightarrow W^+ W^-$
 - Limits on anomalous quartic gauge couplings

All Forward physics results at CMS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

Pb

00000

g

р

р

The CMS Experiment

Motivation: Exclusive upsilon photoproduction

- → The exclusive photoproduction of Υ studied in pPb ultra peripheral collisions
- → Ions interact via photons, flux of photons α Z²
- \rightarrow γ p: Dominant contribution, γ Pb: Small contribution
- Photoproduction process is sensitive to the gluon density squared in the nucleon (nucleus)

$$\frac{d\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16\pi^3 [xG(x,Q^2)]^2$$

$$\sigma_{\gamma p \to \gamma p} = \frac{1}{b} \frac{d \sigma_{\gamma p, A \to V p, A}}{dt} \Big|_{t=0}$$

- → Probe gluon distribution in the proton at low x (10⁻⁴ to 2*10⁻²) $x = (M_Y / W_{yp})^2$

$$\sigma \propto W_{\gamma p}^{\delta}$$

Exclusive upsilon production

→ 2013 pPb data at 5.02 TeV with 32.6 nb⁻¹

CMS-FSQ-13-009

- → Offline exclusive pPb → Υ (γp) → $\mu^+\mu^-$ signal selection
 - Invariant mass (μμ) : 9.12–10.64 GeV
 - Opposite-sign $\mu\mu$ pair (final state) originating from commom primary vertex
 - No extra tracks at $\mu\mu$ vertex to suppress non-exclusive background
 - Upsilon $p_{\tau}: 0.1-1$ GeV to suppress QED and non-exclusive background
 - Upsilon |y| < 2.2 high muon finding efficiency

Exclusive upsilon production

Data compared to simulation (contains different contribution)

CMS-FSQ-13-009

- \rightarrow Low p_T: **QED** elastic background, estimated by **STARLIGHT**
- → High p_{τ} : Non-exclusive background estimated from data
- **\rightarrow** STARLIGHT MC : γ Pb(small contribution) and γ p contribution reweighted

Good agreement betweem data and MC

Number of signal events estimated by subtracting all background contributions.

DIS, 2016

Photoproduction cross section as a function of t

The differential cross section is calculated according to

$$\frac{d \,\sigma_{\rm Y}}{dt} = \frac{N_{sig}^{Unfolded}}{L \times \Delta t}$$

- N_{sig}, the background subtracted, unfolded and acceptance corrected number of upsilon events in each | t | bin.
- $d\sigma/dt$ fitted with an exponential **→** function, provides the information on the transverse profile of the interaction region.

CMS-FSQ-13-009

7

 $b = 4.3^{+2.0}$ (stat)

Phys.Lett.B 708 (2012) 14

Cross-section as a function of W

The cross-section is estimated by

$$\sigma_{\gamma p \to Y(1S)p} = \frac{1}{\Phi} \frac{d \sigma_{Y(1S)}}{dy}$$

- Rapidity distribution of $\Upsilon(1S+2S+3S)$ used to estimate $\sigma_{\gamma p}$ (1S) vs W_{γp}
- The cross-section is corrected for muonic branching ratio, feeddown, upsilon (1S) fraction

Motivation: Exclusive electroweak boson pairs

- The exclusive production of W pairs is sensitive to anomalous quartic gauge couplings (aQGC)
- The electro-weak sector of Standard Model predicts QGC
- Any deviation from SM expections can reveal a sign of new physics
- → Objective: Measure SM cross section and look for aQGC.
- aQGC are introduced via effective Lagrangian

$$\mathcal{L}_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-}$$
$$\mathcal{L}_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} - W^{-\alpha} W_{\beta}^{+}) \cdot$$

Anomalous coupling constant for quartic vertex Λ : Scale for New Physics

Exclusive $\gamma \gamma \rightarrow W^+ W^-$ event selection

DIS, 2016

- Exclusive production of W pairs $pp \rightarrow p^{(*)}W^+W^-p^{(*)}$ $p^{(*)}$: Elastic + Inelastic contributions
- → 2011 pp collision data at 7 TeV with 5.05 fb⁻¹
- → 2012 pp collision data at 8 TeV with 19.7 fb⁻¹
- → Offline exclusive $\gamma\gamma \rightarrow W^+ W^-$ signal selection
 - Opposite-sign eµ pair (final state) originating from commom primary vertex
 - No extra tracks at eµ vertex to remove inclusive background
 - Invariant mass (eµ) > 20 GeV to get rid of any low mass resonances
 - $p_{\tau}(e\mu) > 30 \text{ GeV}$ to suppress DY and $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$
- Proton dissociation factor from exclusive μμ sample
 p_τ (eμ) > 30 GeV SM , p_τ (eμ) > 100 GeV aQGC

SM evidence at 7 and 8 TeV

SM signal region : N extra tracks =0 , $p_{\tau}(e\mu) > 30 \text{ GeV}$

R. Chudasama

DIS, 2016

aQGC search and limit at 7 and 8 TeV

- Used shape of p_τ (eµ) distribution to search for sign of anomalous quartic gauge couplings
- → p_T (eµ) > 100 GeV used at
 7 TeV
- → Two bins at 8 TeV
 30 < p_T (eµ) < 130 GeV and
 p_T (eµ) > 130 GeV
- Region outside solid line is excluded at 95% CL
- The most stringent limit so far, two orders of magnitude more stringent than LEP

Dimension-6 AQGC parameter	$7 \text{ TeV} (\times 10^{-4} \text{ GeV}^{-2})$	$8 \text{ TeV} (imes 10^{-4} \text{ GeV}^{-2})$	7+8 TeV ($\times 10^{-4} \text{GeV}^{-2}$)
$a_0^{\rm W} / \Lambda^2 (\Lambda_{\rm cutoff} = 500 {\rm GeV})$	$-1.5 < a_0^W / \Lambda^2 < 1.5$	$-1.1 < a_0^W / \Lambda^2 < 1.0$	$-0.9 < a_0^W / \Lambda^2 < 0.9$
$a_C^W / \Lambda^2 (\Lambda_{\text{cutoff}} = 500 \text{GeV})$	$-5 < a_{C}^{W} / \Lambda^{2} < 5$	$-4.2 < a_C^W / \Lambda^2 < 3.4$	$-3.6 < a_C^W / \Lambda^2 < 3.0$

Summary

- Exclusive upsilon photoproduction
 - The first measurement of exclusive Υ photoproduction in pPb collisions at 5.02 TeV
 - Data compatible with power-law dependence of $\sigma(W_{_{\gamma p}})$, disfavours LO pQCD predictions
 - The differential cross-section $d\sigma/d|t|$ is in agreement with earlier measurements and consistent with predictions based on pQCD models
- → Exclusive $\gamma \gamma \rightarrow W^+ W^-$
 - 2 events at observed at 7 TeV, 13 events observed at 8 TeV in SM region
 - The observed yields and kinematic distributions are consistent with the SM prediction, with a combined significance over the background-only hypothesis of 3.4σ
 - Search for aQGC- The most stringent limit so far, no indication of aQGC found.
- Probe lower x vaues with pPb 8 TeV collision
- → Expect more results in the future (13 TeV) with CT-PPS.