

1

Measurement of central exclusive $\pi^+\pi^$ production at $\sqrt{7}$ TeV in CMS

Mohsen Khakzad

School of Particles and Accelerator (IPM)

WG5 Small-x and Diffraction

Introduction

Data and MC models

Data Analysis

- Event Selection
- Background Estimation
- Systematics

Results

Summary

Physics motivation

Exclusive production: the protons remain intact (not detected in CMS) after the interaction and escape undetected along the beamline or dissociate into undetected low mass states.

Exclusive Two-Photon Elas

Elastic Photo-Production

CEP: central exclusive production

 $\mu^{+}\mu^{-}$, e^{+} e^{-} , $\pi^{+}\pi^{-}$,

W^+W^-

 QED lepton pair production is of interest as a check/control of everything (including dissociation probability)

- ρ, **J**/ψ, Υ, **Z**, ...
- Photoproduction of vector mesons tests pomeron coupling to quark (done at HERA with no DPE background)

<i>p</i>	p
0000	200
2000	\rightarrow
0000	leee
- p	
	ν

 X_c , χ_b , $\pi^+\pi^-$, Dijet ,

gg, ...

- Test the soft pomeron models, and good for hadron spectroscopy
- ✓ glue-rich: so scalar and tensor glueballs produced

Contribution may come from exclusive sources, with large cross-sections well measured in previous experiments at lower energies:

Central Exclusive Production (CEP)

(hadron-hadron)

 $\Rightarrow \gamma p \rightarrow \rho (770)p \rightarrow \pi^+\pi^-p$ Production

(electron-hadron) (hadron-hadron)

- > Spectroscopic study: low-mass scalar resonances
- Different analysis from μμ: larger σ and larger background

Experimental signature

* Signal:

- * Only two tracks, no other track on vertex
- * No additional signals in the calorimeters
- * p_T(π) > 200 MeV/c
- * **|y(**π)**|** < 2.0
- Exclusive production of hadrons at central rapidities phenomenologically described in terms of "DPE" Double Pomeron Exchange when the mass of central system is low, or perturbatively in "CEP"

CMS (Compact Muon Solenoid)

Pseudorapidity: $\eta = - \ln(tan(\theta/2))$

Forward detectors at CMS

Monte Carlo models

- PYTHIA 8: MBR (Minimum Bias Rockefeller) model used to generate pp events with particle production from three diffraction dissociation processes:
 - Single dissociation (SD): one proton dissociates; p + p → Xp,
 - Double dissociation (DD): both protons dissociate; p + p → XY
 - Double Pomeron Exchange (DPE): neither proton dissociates; pp → pXp The produced system X is then fragmented into hadrons by PYTHIA. (<u>https://indico.cern.ch/event/195114/contribution/1/material/slides/0.pdf</u>)
- STARLIGHT: The production of vector mesons in exclusive photoproduction γIP, e.g.
 ρ⁰ → π⁺π⁻. In this MC generator, one of the protons emits a quasi-real photon, that materializes into a vector meson by scattering with the other proton via IP exchange

Dime MC: The Durham Dime MC model provides theoretical predictions for pp → pπ⁺π⁻p processes. (continuum contribution – resonances not included)

Event selection

- 2010 Data sample corresponds to an integrated luminosity of 450 µb⁻¹
- Low pileup beam conditions at $\sqrt{7}$ TeV
- Trigger: HLT_ZeroBias
- Exactly two opposite-sign tracks with p_T(π) > 200 *MeV/c* and |y(π)| < 2
- Track-quality cuts (high purity) to remove fake tracks
- Primary vertex with 2 tracks and|z| < 15 cm of the nominal center
 - No extra calorimeter activity

Noise thresholds on ECAL & HCAL

Selection	Data: events left
High-level trigger zero-bias	33214795
Exactly two tracks	215139
Track purity	170990
y(track) < 2	128375
$p_T(track) > 0.2 \text{ GeV/}c$	103038
Vertex with 2 tracks	58468
$ z_{vertex} < 15 \mathrm{cm}$	57602
$E_{EB} < 0.52$ GeV	49462
$E_{EE} < 2.18$ GeV	42988
$E_{HB} < 1.18 \text{ GeV}$	41703
$E_{HE} < 1.95 \text{ GeV}$	32565
$E_{HF^+} < 4.0 { m GeV}$	14037
$E_{HF^-} < 4.0 \mathrm{GeV}$	6102
Opposite-sign	5402
Same-sign	700

Background Estimation Packalonua Estimation

Data-driven estimate of background Background Control Region

Use the same procedure on same-sign (SS) events (purely background)

Signal distributions Signal: Opposite-sign (OS)

- Using the sideband region in the tower multiplicity distribution
- For the nominal background estimate, use the control sample with 1-5 extra calorimeter towers above threshold, and all other selection criteria applied
- The non-exclusive background shapes obtained from this method are shown, with a normalization given by the average number of events per bin of tower multiplicity

Background is π⁺π⁻ events but with additional activity

Particle identification

study of non-pion contamination

The identification of charged pions is carried out using measured momentum and isolation energy loss, dE/dx, of the low momentum tracks traversing the silicon tracker

- Separation of pions from Kaons and few protons:
- Scatter distribution shows the separation of two tracks
 - ~90% of two tracks are $\pi^{-}\pi^{+}$ in the momentum range of 0.2-0.7 GeV/c
 - ~2.5% are K+K-, ~7% are pi-K, ~0.9% are pi-p
- We do not subtract the non- π - π background (efficiency mass dependence)

 $M = p \sqrt{(dE / dx - C) / K}$

Systematics Nationalics

Source	Uncertainty (%)
Background estimation	7.2
Tracking efficiency (pion pair)	7.8
Luminosity measurement	4.0
Unfolding	10.3
HF energy scale	2.0
Barrel, Endcap energy scale	3.9

- Table above summarizes the sources of total systematic uncertainty on the cross section measurement
- The total systematic uncertainties is obtained by adding the individual sources in quadrature

- Differential cross section:
 - with $p_T(\pi) > 0.2$ GeV/c and $|y(\pi)| < 2$
 - compared to the predictions of DPE productions from the Dime MC (red/green-curves), and STARLIGHT (dash). (Here: Dime MC & Starlight are stacked)
 - The shaded blue band shows the overall systematic uncertainty, and the thin error bar indicates the statistical uncertainty
 - The results are plotted on a linear scale (left) and a logarithmic scale (right)

dσ / d [$p_T(\pi\pi), y(\pi\pi), p_T(\pi)$]

- Differential cross sections as a function of p_T and Rapidity:
 - with $p_T(\pi) > 0.2$ GeV/c and $|y(\pi)| < 2$ at $\sqrt{7}$ TeV
 - compared to the predictions of DPE production from the Dime MC (red/green-curves), and STARLIGHT (dash). (Here: Dime MC & Starlight are stacked)
 - The shaded blue band shows the overall systematic uncertainty, and the thin error bar indicates the statistical uncertainty
 - The results are plotted on linear and log scale
 - As the rapidity gap still extends to |η| = 4.9, the minimum gap size in this case is 3.9, a fact that leads to a reduction of the contribution of non-pomeron exchange.

19

 $= 20.5 \pm 0.3(stat.) \pm 3.1(sys.) \pm 0.8(lumi)\mu b$

- Corrected differential cross section, comparing $|y(\pi)|$ regions < 1 and 2
- New Mass(π - π +) plot does have the strong features f0(980) and f2(1270)
- The minimum gap increases to 3.9, which will select purer DPE events and seems to enhance the resonance structures.

 $\sigma_{Vis} = 8.1 \pm 0.2(stat.) \pm 1.2(sys.) \pm 0.3(lumi)\mu b$

20 at √7 TeV

 $p_{T}(\pi) > 0.2 \text{ GeV/c and } |y(\pi)| < 1$

Summary

- Integrated and differential cross sections of the pion-pair production for the exclusive and semiexclusive reaction
- Using the proton-proton collisions at $\sqrt{7}$ TeV with the CMS detector with an integrated luminosity of 450 μ b⁻¹
- The integrated cross section in the phase space of $p_T(\pi) > 0.2$ GeV/c and $|y(\pi)| < 2$ with no additional particles above threshold
- The π⁺π⁻ cross sections as a function of in variant mass, p_T, and y have been compared to model predictions: Dime MC and STARLIGHT
- The integrated measured cross section is larger than the predictions based on exclusive $\pi^+\pi^-$ without proton dissociationation, with most of the excess at $p_T(\pi^+\pi^-) > 0.5$ GeV/c.
- The invariant-mass spectrum shows some features not included in the purely non-resonant predictions
 - Similar to those observed in lower-energy p-pbar [CDF with √1.96 TeV for p_T> 1 GeV/c: Phys Rev D 91, 091101(R) (2015)], and qualitatively reproduced in Phys. Rev. {D92} (2016) 054015.

Thank you!