Multi-jet production and jet correlations at CMS

Gabor Veres (CERN) DIS 2016 Conference April 13th, 2016

Outline

- Mueller-Navelet dijets at 7 TeV: decorrelation (DGLAP vs. BFKL)
- Dijets with rapidity gap at 7 TeV: color-singlet exchange

MN dijet decorrelations, 7 TeV

• Azimuthal angle correlations between most forward and backward jets (Mueller-Navelet configuartion).

- Anti- k_{T} jets, R=0.5, p_{T} >35 GeV, |y|<4.7, separation $\Delta y \approx$ 9.4
- pQCD calculations with collinear factorisation using the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) parton evolution scheme are very successful
- At low p_T and large Δy, Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution equations are more appropriate.
 - LL at infinite energy, NLL at finite energy
 - Prediction: dijet xsec increasing with Δy

ArXiv:1601.06713 Submitted to JHEP

MN dijet decorrelations, 7 TeV

• Jets: back-to-back ($\Delta \phi = \pi$) on tree level; any decorrelation is due to higher order processes, semi-hard parton interactions

- D0 did not find significant BFKL indications ($\Delta y < 6$). Decorrelations are predicted to be sensitive to BFKL.
- •
- Trigger: x100 gain: forward-backward dijet trigger with |y|>3 GeV, $p_T>35$ GeV
- Average pileup = 2.2, but only single-vertex events used
- Unfolding for detector resolution, bin migrations < 20%.

ArXiv:1601.06713 Submitted to JHEP

Observables

BFKL: large jet $\Delta \eta$: parton emissions, decorrelation

DGLAP: low p_{τ} emissions, independent of jet $\Delta\eta$: no decorrelation

Monte Carlo models

- DGLAP+LL soft and collinear radiation, tuned to LHC data:
 - PYTHIA6 Z2, PYTHIA8 4C, HERWIG++
- DGLAP with three-level matrix elements + LL parton showers
 - SHERPA
- NLO terms:
 - **POWHEG**, interfaced with PYTHIA
- NLL BFKL analytical predictions
 - Phys. Rev. Lett. 112 (2013) 082003
- LL BFKL matrix elements
 - HEJ+ARIADNE (for hadronisation and PS)

Azimuthal angle difference, $\Delta y < 3$

- Sharp correlation between jets
- **DGLAP** models PYTHIA6 and HERWIG++ agree well with data
- **PYTHIA8** and **SHERPA**: significant deviations
- **HEJ** overestimates decorrelations

Azimuthal angle difference, 3<∆y<6

• **PYTHIA** deviates from data at small $\Delta \phi$, where **HERWIG** and **SHERPA** are successful

Azimuthal angle difference, 6<∆y<9.4

- Correlation diluted at very high Δy
- **PYTHIA** deviates from data at small $\Delta \phi$
- We will study Fourier-harmonics: $C_n = \langle \cos(n(\pi \Delta \phi)) \rangle$

$C_1 \equiv \langle \cos(\pi - \Delta \phi) \rangle$ distributions

- <cos> can be expressed using conformal symmetries in BFKL
- HERWIG++: fair agreement
- POWHEG shows no improvement
- SHERPA: not enough decorrelation, HEJ: too much decorrelation

$C_2 \equiv \langle \cos(2(\pi - \Delta \phi)) \rangle$ distributions

- **PYTHIA** 6 and 8: fair agreement with data
- **SHERPA**: not enough decorrelation
- HEJ: too much decorrelation

$C_{3} \equiv \langle \cos(3(\pi - \Delta \phi)) \rangle$ distributions

- **PYTHIA** 6 and 8: fair agreement with data
- SHERPA: not enough decorrelation
- HEJ: too much decorrelation

C_2/C_1 ratios

- Ratios suppress DGLAP contributions and uncertainties of factorization and renormalization scales
- PYTHIA and SHERPA underestimates decorrelation, HERWIG overestimates
- NLL **BFKL**: good agreement with data

C_{3}/C_{2} ratios

- **PYTHIA** consistent with data, **HERWIG** and **HEJ** overestimates
- SHERPA consistent with data
- NLL **BFKL**: good agreement with data

<cos(n(π - $\Delta \phi$))> distributions: MPI?

- Multi-parton interactions are another source of decorrelation
- Turning MPI on (dashed lines) or off (solid lines) in PYTHIA8 and HERWIG++ does not change the average cosine distributions!

C_2/C_1 ratios: MPI?

 Turning MPI on (dashed lines) or off (solid lines) in PYTHIA8 and HERWIG++ does not change the average cosine ratios!

Dijets with rapidity gap, 7 TeV

- Signature: two leading jets with no particles in between
- Jets with p_⊤>40 GeV, 1.5<|y|<4.5
- Dijets: normally gluon or quark exchange; color field; additional particle emissions between jets, DGLAP (k_τ ordered)
- No activity between jets: **BFKL** (ordering in x)
- Absence of particles: consistent with diffraction, color singlet exchange (CSE) here a gluon ladder?
- Jet-gap-jet observed at D0, CDF, Tevatron, HERA
- Gap particles: $|\eta| < 1$, $p_T > 0.2$ GeV

Number of tracks between the jets

• Track multipicity distribution well described by **DGLAP**...

Comparison with MC models

 …Except at zero (jet-gap-get events!), which is described by BFKL (CSE)

SS: the two leading jets are on the same side. Used to estimate background for the CSE peak.

Dijet $\Delta \phi$ and p_{τ} ratio distributions

- The azimuthal angle difference and $R=p_{T2}/p_{T1}$ ratio distributions are well described by MC (CSE and non-CSE)
- For CSE (N_{tracks} =0), jets are more back-to-back and balanced

Jet p_{τ} distributions

• In the zero-multiplicity bin (jet-gap-jet), the **BFKL**-based MC describes the p_T distributions of the leading and subleading jet.

After background subtraction

- The non-CSE background is subtracted
- The CSE peak at low multiplicity is described by **HERWIG6**
- The fraction of these CSE dijets is 0.5-1%, increasing with $p_{\scriptscriptstyle T}$
- Decrease with increasing energy: more rescattering (gap destruction)

Summary

Mueller-Navelet dijet decorrelations (7 TeV):

- DGLAP MC with LL PS and color coherence effects (HERWIG++) describes the data well
- POWHEG with NLO + PYTHIA is not better than PYTHIA alone
- HEJ(LL **BFKL**) overestimates decorrelations
- Analytical NLL **BFKL** calculation agrees with data
- Higher collision energies may be more decisive

Jet-gap-jet events (7 TeV):

- LO DGLAP does not reproduce dijet events with no particles between them
- The CSE fraction (0.5-1%) rises with $p_{\scriptscriptstyle T}$
- ...and decreases with collision energy

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFSQ

BACKUP

The CMS Experiment

Systematic uncertainties: MN decorr.

• Systematic undcertainties of the MN dijet decorrelation measurement:

Observable	JES	JER	Corrections	Total systematic	Statistical
$\Delta \phi(\Delta y < 3.0)$	+(2.3-13.7) -(3.0-10.2)	+(0.1-10.6) -(0.4-7.6)	0.1–2.0	+(2.3-17.4) -(3.0-12.7)	0.3–5.1
$\Delta \phi(3.0 < \Delta y < 6.0)$	+(2.5-16.4) -(2.9-10.8)	$^{+(0.7-6.2)}_{-(0.8-3.4)}$	0.4–2.3	+(3.0-17.5) -(3.1-11.3)	0.9–6.2
$\Delta \phi(6.0 < \Delta y < 9.4)$	+(2.1-31.5) -(1.9-17.3)	+(5.8-17.4) -(2.1-9.7)	0.4-4.5	+(6.8-32.6) -(3.6-19.5)	5.3-22.0
C_1	1.0-5.5	0.6-4.6	0.1-3.2	1.1-6.5	0.2–9.7
C_2	1.8–16.9	1.0-4.0	0.1-4.9	2.3-17.4	0.5–17.7
C_3	2.7-23.8	1.5-15.1	0.1-6.4	3.2-24.6	0.7-23.7
C_2/C_1	0.8–12.5	0.4–5.6	0.1-2.6	1.0-13.1	0.5–19.7
C_{3}/C_{2}	0.7–7.1	0.2-7.0	0.03-4.3	0.7-10.6	0.8–28.1

Color Singlet Exchange fraction

- The CSE fraction is plotted as a function of $p_{_{T2}}$ and $\Delta\eta$
- Mueller-Tang model underestimates CSE fraction and does not reproduce rising trend

Monte Carlo models and data (jet-gap-jet)

- PYTHIA6 Z2*:
 - LO DGLAP
 - Lund string fragmentation
 - MPI, ISR, FSR
 - tuned to LHC UE data
- HERWIG6:
 - hard CSE via elastic parton scattering (Mueller-Tang model)
 - based on LL BFKL
 - cluster fragmentation
 - no MPI (for that, JIMMY)
- Event selection in data:
 - At least 2 jets
 - 0 or 1 vertex
 - The two leading jets in different hemisphere, and $|\eta|$ >1.5