Fit of Electroweak Parameters in Polarised Deep-Inelastic Scattering using data from the H1 experiment

<u>Daniel Britzger</u> for H1 Collaboration and H. Spiesberger

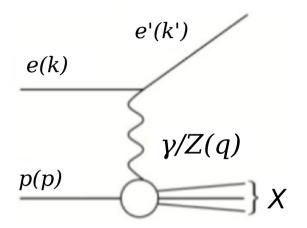
DIS 2016 – Workshop on DIS and Related Subjects
DESY, Hamburg-Bahrenfeld, Germany
13.04.2016

Deep-inelastic scattering

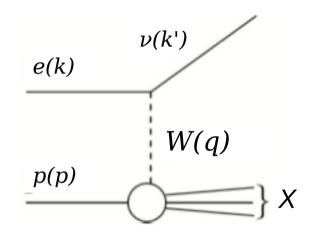
Kinematic variables

- virtuality of exchanged boson

$$Q^2 = -q^2 = -(k-k')^2$$


- Bjorken scaling variable

$$x = \frac{Q^2}{2 p \cdot q}$$


- Inelasticity

$$y = \frac{p \cdot q}{p \cdot k}$$

Neutral current scattering $ep \rightarrow e'X$

Charged current scattering $ep \rightarrow \nu_{e} X$

Factorization in ep collisions

Hard scattering coefficients and parton distribution functions (PDFs)

$$\sigma_{ep \to eX} = f_{p \to i} \otimes \hat{\sigma}_{ei \to eX}$$

PDFs are not observables – only structure functions are

PDFs are largely determined from DIS data

Polarised deep-inelastic ep scattering

Neutral and charged current at tree level

$$\frac{d\sigma_{NC}^{\pm}}{dQ^{2}dx} = \frac{2\pi\alpha^{2}}{x} \left[\frac{1}{Q^{2}} \right]^{2} (Y_{+} F_{2} + Y_{\perp} x F_{3} + y^{2} F_{L})$$

$$\frac{d\sigma_{CC}^{\pm}}{dQ^{2}dx} = \frac{1 \pm P}{2} \frac{G_{F}^{2}}{4\pi x} \left[\frac{m_{W}^{2}}{m_{W}^{2} + Q^{2}} \right]^{2} (Y_{+} W_{2}^{\pm} \pm Y_{\perp} x W_{3}^{\pm} - y^{2} W_{L}^{\pm})$$

$$Y_{+} = 1 \pm (1 - y)^{2}$$

Calculations in on-shell scheme

$$G_{F} = \frac{2\pi\alpha}{2\sqrt{2}m_{W}^{2}} \left(1 - \frac{m_{W}^{2}}{m_{Z}^{2}}\right)^{-1} (1 + \Delta r)$$

Corrections to G_c

$$\Delta r = \Delta r(\alpha, m_W, m_Z, m_t, m_H, ...)$$

Generalised structure functions

$$\begin{aligned} & \boldsymbol{F}_{2} = \boldsymbol{F}_{2}^{y} + \kappa_{z} \left(-v_{e} \mp P a_{e} \right) \boldsymbol{F}_{2}^{yz} + \kappa_{z}^{2} \left(v_{e}^{2} + a_{e}^{2} \pm P v_{e} a_{e} \right) \boldsymbol{F}_{2}^{z} \\ & \boldsymbol{x} \boldsymbol{F}_{3} = + \kappa_{z} \left(\pm a_{e} + P v_{e} \right) \boldsymbol{F}_{3}^{yz} + \kappa_{z}^{2} \left(\mp 2 v_{e} a_{e} - P \left(v_{e}^{2} + a_{e}^{2} \right) \right) \boldsymbol{x} \boldsymbol{F}_{3}^{z} \end{aligned}$$

Zº-exchange

$$\kappa_Z(Q^2) = \frac{Q^2}{Q^2 + m_Z^2} \frac{G_F m_Z^2}{2\sqrt{2}\pi\alpha}$$

Structure functions in QPM

$$\begin{split} & \left[F_{2}, F_{2}^{\gamma Z}, F_{2}^{Z} \right] = x \sum_{q} \left[e_{q}^{2}, 2 e_{q} v_{q}, v_{q}^{2} + a_{q}^{2} \right] \{ q + \overline{q} \} \\ & \left[x F_{3}^{\gamma Z}, x F_{3}^{Z} \right] = x \sum_{q} \left[2 e_{q} a_{q}, 2 v_{q} a_{q} \right] \{ q - \overline{q} \} \end{split}$$

Weak couplings to Z-boson

$$v_f = I_{f,L}^{(3)} - 2e_f \sin^2 \theta_W$$

$$a_f = I_{f,L}^{(3)}$$
(f = e, u, d, ...)

Parameters to calculations

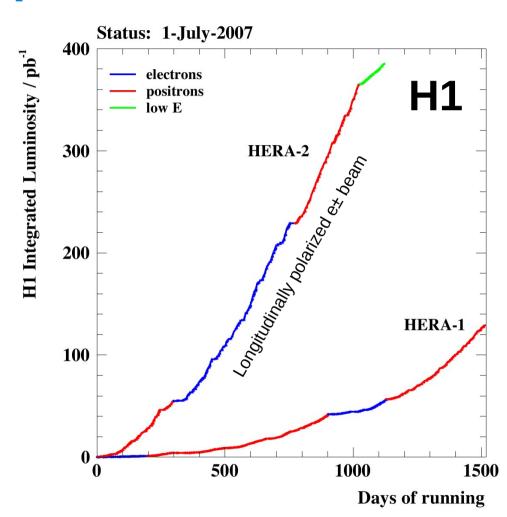
Parameters to cross section calculation: α , m_z , m_w , $(m_t, m_H, ...)$

More general, also couplings: v_e, a_e , v_u, a_u and v_d, a_d

HERA Operation

HERA-I operation 1993-2000

- $E_e = 27.6 \text{ GeV}$
- $E_p = 820 / 920 \text{ GeV}$
- $\sqrt{s} = 301 \& 318 \text{ GeV}$
- int. Lumi. ~ 110 pb-1


HERA-II operation 2003-2007

- $E_e = 27.6 \text{ GeV}$
- $E_p = 920 \text{ GeV}$
- $\sqrt{s} = 318 \text{ GeV}$
- int. Lumi. ~ 330 pb-1
- Longitudinally polarised leptons

Polarisation:
$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

Low-Energy Run 2007

- $E_e = 27.6 \text{ GeV}$
- E_n = 575 & 460 GeV
- $\sqrt{s} = 225 \& 251 \text{ GeV}$
- Dedicated F_L measurement

The H1 Detector

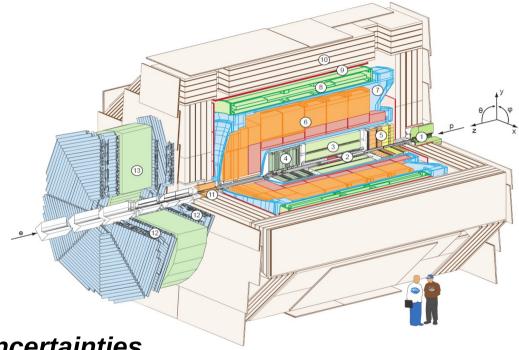
H1 multi-purpose detector

Asymmetric design

Trackers

- Silicon tracker
- Jet chambers
- Proportional chambers

Calorimeters


- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter

Superconducting solenoid

1.15T magnetic field

Muon detectors

Drawing of the H1 experiment

Excellent control over experimental uncertainties

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 1.5 2.5%
- · Continuous upgrades with time

H1 Structure Function Data

Dataset	Q ² min	Q2 max	No. Points	Polarisation [%]	Reference
e+ Combined low-Q ²	12 [0.5]	150	81 [262]		EPJ C71 (2011) 1579 arXiv:1012.4355
e+ Combined low-E _P	12 [1.5]	90	118 [136]		
e+ NC 94-97	150	30000	130		EPJ C13 (2000) 609 hep-ex/9908059
e+ CC 94-97	300	15 000	25		
e- NC 98-99	150	30 000	126		EPJ C19 (2001) 269 hep-ex/0012052
e- CC 98-99	300	15 000	28		
e- NC 98-99 high y	100	800	13		EPJ C30 (2003) 1 hep-ex/0304003
e- NC 99-00	150	30 000	147		
e+ CC 99-00	300	15 000	28		
e+ NC high y	60	800	11		JHEP 1209 (2012) 061 arXiv:1206.7007
e- NC high y	60	800	11		
e+ NC L	120	30 000	137	-37.0 ± 1.0	
e+ CC L	300	15 000	28	-37.0 ± 1.0	
e+ NC R	120	30 000	137	$+32.5 \pm 0.7$	
e+ CC R	300	15 000	28	+32.5 ± 0.7	
e- NC L	120	50 000	138	-25.8 ± 0.7	
e– CC L	300	30 000	29	-25.8 ± 0.7	
e- NC R	120	30 000	139	$+36.0 \pm 0.7$	
e– CC R	300	15 000	28	+36.0 ± 0.7	

Fit methology I

Determine light-quark couplings

• Use iterative minimisation procedure ('fit') of cross section predictions to data

Unfortunate correlation

- PDFs have considerable uncertainties
- These PDFs are essentially determined from H1 structure function data
 - -> Large correlations
- Consider PDF uncertainty by simultaneous fit of PDFs and light quark couplings

Consistency of fit-parameters in SM formalism

• Perform calculations strictly in on-shell scheme Parameters are: α , m_Z , m_W , $(m_t, m_H, ...)$

Polarisation measurement

- Measurements of the beam polarisations are measurements on their own
- -> Consider these measurements as independent measurements in fit

1-loop EW corrections

- May be considered in terms of 'EW form factors'
- Are ignored in the present analysis, but will be included in the future

Fit methology II

New C++-based fitting code for PDF and more general fits developed (Alpos)

- DGLAP evolution of PDFs in NNLO QCD (QCDNUM with ZMVFNS)
- PDFs are parameterised at starting scale $Q_0^2 = 1.9 \text{GeV}^2$ (similar to HERAPDF2.0)

$$xg \qquad xg \qquad xg(x) = A_g x^{B_g} (1-x)^{C_g} - A_g' x^{B_g'} (1-x)^{C_g'},$$

$$xu_v \qquad xU = xu + xc \qquad xu_v(x) = A_{u_v} x^{B_{uv}} (1-x)^{C_{uv}} \left(1+E_{u_v} x^2\right),$$
 fixed or constrained by sum-rules
$$xd_v \qquad xD = xd + xs \qquad xd_v(x) = A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}},$$
 parameters set equal but free
$$x\bar{U} \qquad x\bar{U} = x\bar{u} + x\bar{c} \qquad x\bar{U}(x) = A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}}x),$$

$$x\bar{D} = x\bar{d} + x\bar{s} \qquad x\bar{D}(x) = A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}.$$

Use only data with Q² >= 12 GeV²

χ² Definition

- Uncertainties on cross sections are assumed to be 'log-normal' distributed (relative uncertainties)
- Uncertainties on polarisation measurements are assumed to be 'normal' distributed
- Correlations of syst. uncertainties between different datasets are considered

$$\chi^{2} = (\log(d) - \log(t))^{T} V_{R}^{-1} (\log(d) - \log(t)) + (d - t)^{T} V_{A}^{-1} (d - t)$$

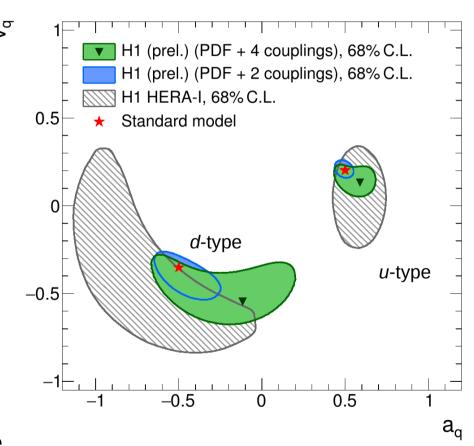
Fit parameters

- 13 PDF parameters
- 4 polarisation values
- 4 Light-quark couplings (or other SM parameters)
- More general also 'nuisance parameters' of syst. uncertainties

Light quark couplings

Couplings of light quarks to Z-boson

- χ^2 / ndf = 1370.5 / (1388 21)
- *u*-type coupling better constrained than *d*-type coupling
 - -> sensitivity from valence quarks
- Results compatible with SM expectation
- PDF uncertainties are small

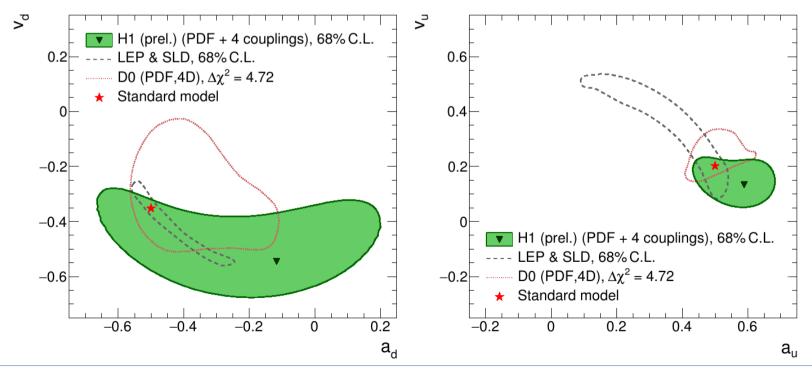

Comparison to H1 HERA-I

Phys.Lett.B 632 (2006) 35

- Considerably improved sensitivity using final H1 HERA-II data
- Polarisation in HERA-II important vor vector couplings

Fit: PDF + 2 couplings

- Reduced correlations and uncertainties
- Correlations between a_u-a_d and v_u-v_d are large



Light quark couplings

Couplings of light quarks to Z-boson

- LEP&SLD [Phys. Rept. 427 (2006) 257]
 Effective couplings from asymmetry at Z-pole
- D0 [Phys. Rev. D 84 (2011) 012007] Forward-backward charge asymmetry

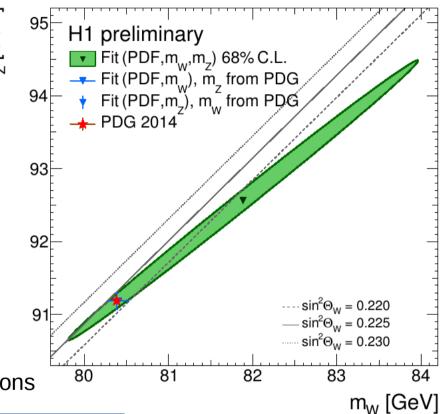
Comparable precision of complementary processes

Study of Standard Model Parameters

Standard Model is now overconstrained

- Important to study consistency in many complementary processes
- HERA: Space-like momentum transfers
- Only purely virtual exchange of bosons

$(m_W - m_Z) + PDF$ fits


- Assume α is known
- on-shell masses $m_{\scriptscriptstyle W}$ and $m_{\scriptscriptstyle Z}$ are only free EW parameters
- Agreeement within PDG14 SM values
- Large correlation between m_w and m_z

Mass of W-boson

Take other masses (m_z) as external input to calculations

$$m_W^{} = 80.407 \pm 0.118 \; (exp,pdf-fit) \pm 0.005 \; (m_{_{Z'}}^{} m_{_{t'}}^{} m_{_{H}}^{}) \; {\rm GeV}$$

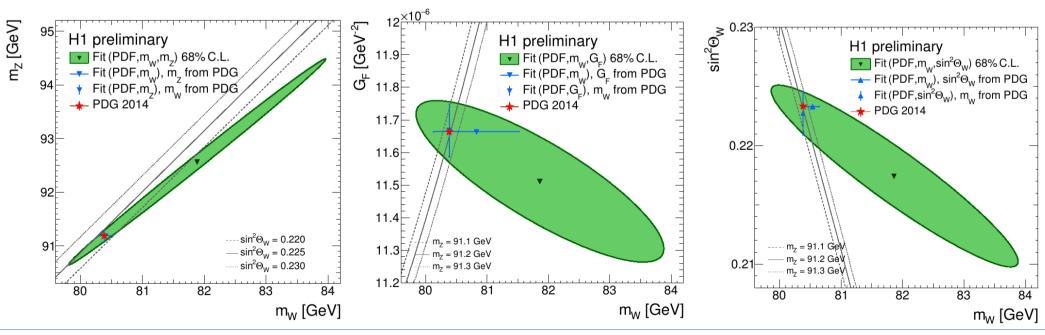
Approx. half the exp. uncertainty may be attributed to PDFs Compare to H1 HERA-I: m_W = 80.786 ± 0.205 (exp) $^{+0.063}_{-0.098}$ (th) GeV

 $m_{W,PDG} = 80.385 \pm 0.015 \text{ GeV}$

Study of Standard Model Parameters

Different view on SM parameters

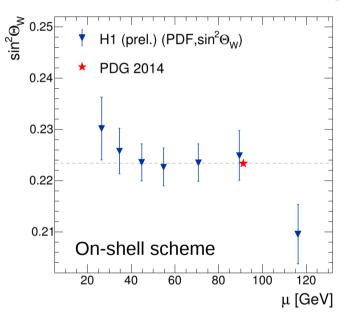
Fermi coupling constant G_F

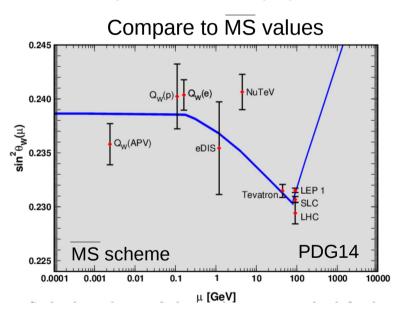

$$G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W} (1 + \Delta r)$$

Weak mixing angle

$$\sin^2\theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

Perform calculations consistently in on-shell scheme (α, m_z, m_w)


- Calculate m_Z (iteratively) from G_F or $sin^2\theta_W$ Results from fits together with PDF and m_W
- H1 values consistent with precise values from PDG
- Correlation to m_W are different for m_Z , $\sin^2\theta_W$ and G_F



Exploit Q² dependence of data

Virtually exchanged bosons allow for SM tests at various energy scales

- Weak mixing angle is extracted for different scales $\mu = \sqrt{Q^2}$
- Simultaneous fit of PDF and values of $sin^2\theta_w$
- Data are subdivided into different Q² regions each with independent sin²θ_w(Q²)

Results

- Results compatible with precise value from Z-pole measurements
- Unique measurement of weak mixing angle at different scales
- Comparison to MSbar values straight forward

Summary and Outlook

Light quark couplings to Z-boson

H1prelim-16-041

- Couplings determined from all H1 structure function data
- Longitudinal polarisation improves significantly H1 HERA-I result
- Values are consistent with SM expectations and compatible with other collider data

Standard model tests

- SM parameters are tested in deep-inelastic scattering
- Good consistency is found for m_z , m_w , G_F and $\sin^2\Theta_w$
- Weak mixing angle is determined at different scales in a single experiment

W-boson mass

- W-boson mass determined with an experimental precision of 118 MeV
- Fitted value consistent with precise direct measurements
- Significantly improves H1 HERA-I results ($\Delta m_W \sim 200 \text{ MeV}$)

Outlook

- Calculations to be supplemented with full 1-loop EW corrections
- -> NNLO-QCD + NLO-EW fit to H1 data