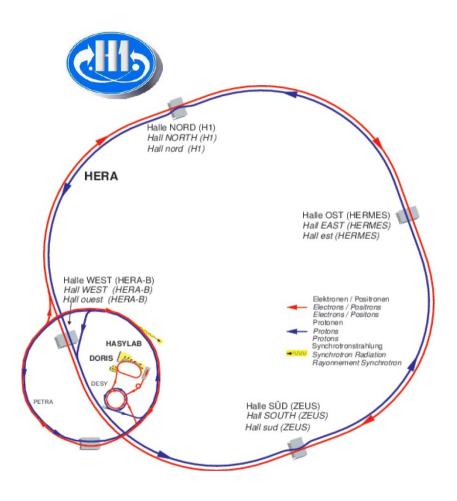
D* production in diffractive DIS

Karel Černý (Charles University in Prague)


on behalf of the H1 Collaboration

April the 13th 2016, DESY, Hamburg

HERA and H1

HERA I (1993-2000) $\approx 120 \text{ pb}^{-1}$ HERA II (2003-2007) $\approx 380 \text{ pb}^{-1}$

$$E_{p} = 920 \text{ GeV}$$
 $E_{e\pm} = 27.5 \text{ GeV}$ $\sqrt{s} = 318 \text{ GeV}$

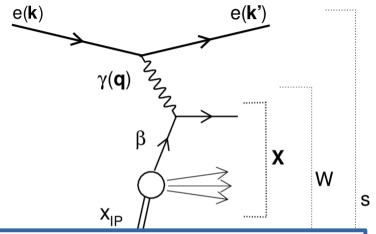
processes: ep → eXY

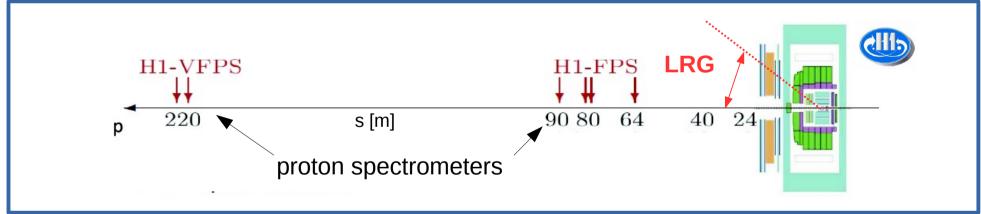
- vacuum quantum numbers exchange
- hard scale present
- rapidity gap between X and Y
 - non-exponentially-suppressed
 - intact proton (EL) or proton
 dissociation (PD) to Y (M_Y << W)
- both gap and leading proton observation used in H1

$$s = (k+P)^{2}$$

$$Q^{2} = -q^{2} = -(k-k')^{2}$$

$$W = \sqrt{(q+P)^{2}}$$


$$t = (P-P_{Y})^{2}$$


$$x = x_{IP} \cdot \beta$$

$$M_{X} = \sqrt{X \cdot X}$$

processes: ep → eXY

- vacuum quantum numbers exchange
- hard scale present

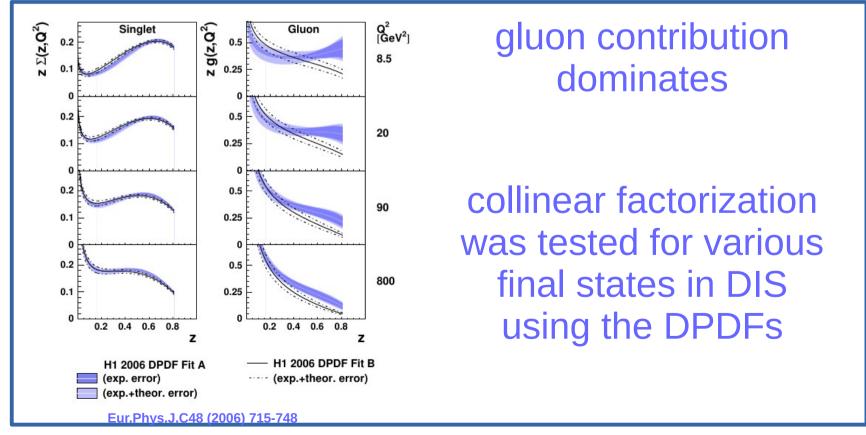
 both gap and leading proton observation used in H1

$$t = (P - P_Y)^2$$

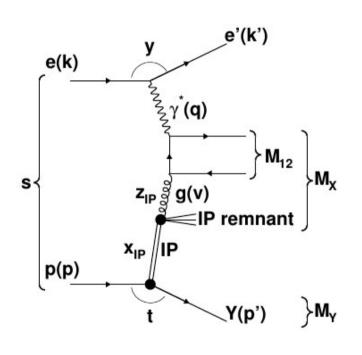
$$x = x_{IP} \cdot \beta$$

$$M_X = \sqrt{X \cdot X}$$

- large data samples collected on inclusive diffractive DIS by H1
- diffractive parton distribution functions (DPDF) extracted from inclusive DDIS under assumption of:

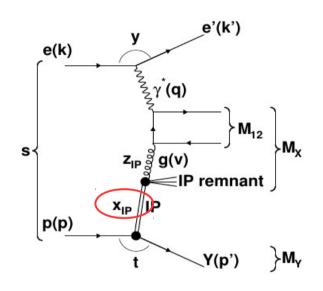

collinear factorization

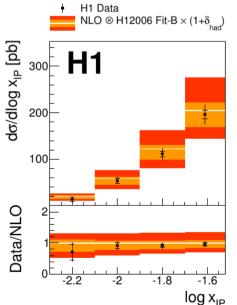
$$d\sigma^{ep \to eXY} = \sum_{i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \otimes d\hat{\sigma}^{i}(x, Q^{2})$$


optionaly, also proton vertex factorization

$$f_{i}^{D}(x,Q^{2},x_{IP},t)=f_{IP/p}(x_{IP},t).f_{i/IP}(\beta=x/x_{IP},Q^{2})$$

- large data samples collected on inclusive diffractive DIS by H1
- diffractive parton distribution functions (DPDF)


of:

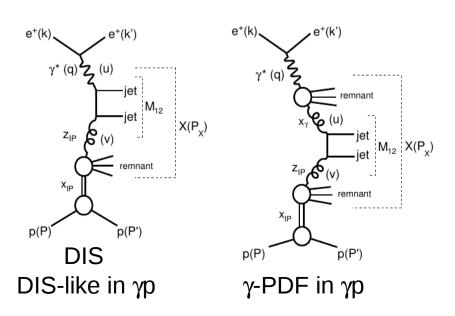


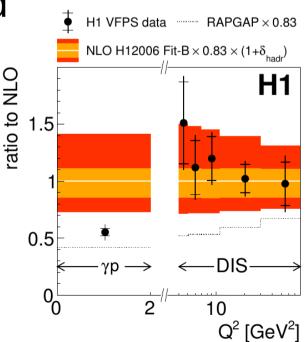
... and other, quark-initiated processes

Dijets in diffractive DIS

- sensitive to gluon DPDF through γ-gluon fusion contribution
- p_T and Q^2 provide hard scale
- measurement precise enough to make it to DPDF fits for further constraints on gluon

JHEP 1503 (2015) 092

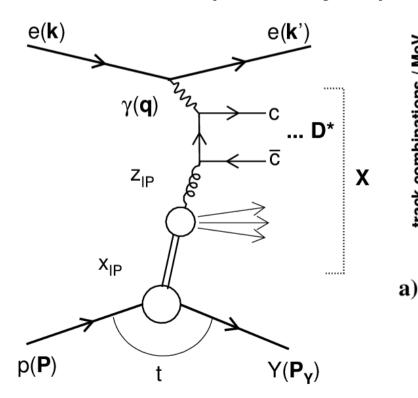

Dijets in diffractive DIS


- sensitive to gluon DPDF through γ -gluon fusion contribution
- p_T and Q^2 provide hard scale
- measurement precise enough to make it to DPDF fits for further constraints on gluon

Dijets in diffractive photoproduction

- predictions based on H1 DPDFs overestimate diffractive hadron-hadron data gap survival ($S^2 < 1$)
- similarly expected in photoproduction regime of ep $(Q^2 \sim 0)$

mechanism still not fully explained

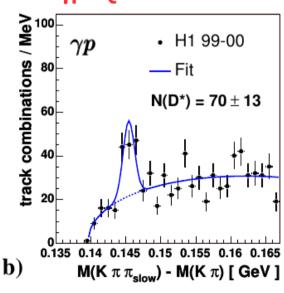

JHEP05 (2015) 056

Open charm in diffraction

DIS

track combinations / MeV

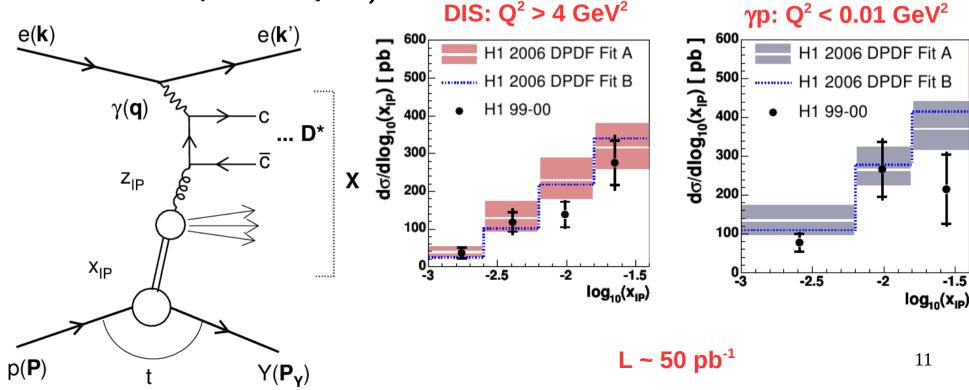
- tagged with presence of D* in the final state
- gluon initiated
- low statistics (w.r.t. dijets)



DIS: $Q^2 > 4 \text{ GeV}^2$ $\gamma p: Q^2 < 0.01 \text{ GeV}^2$ H1 99-00 γp — Fit

 $N(D^*) = 124 \pm 15$

 $M(K \pi \pi_{slow}) - M(K \pi) [GeV]$


Eur.Phys.J.C50 (2007) 1

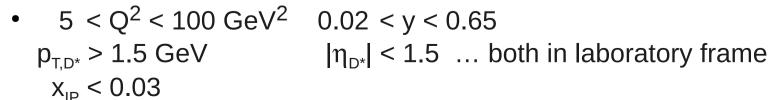
Open charm in diffraction

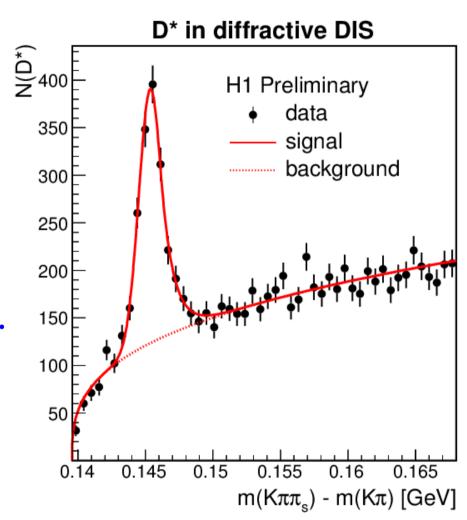
Eur.Phys.J.C50 (2007) 1

- tagged with presence of D* in the final state
- gluon initiated
- low statistics (w.r.t. dijets)

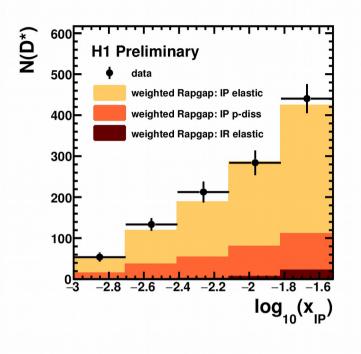
D* production in diffractive DIS

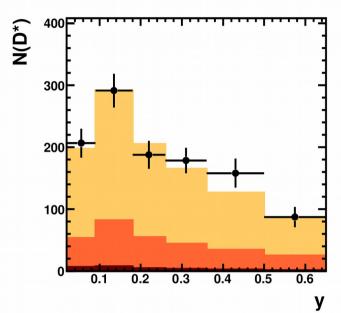
new H1 measurement - preliminary

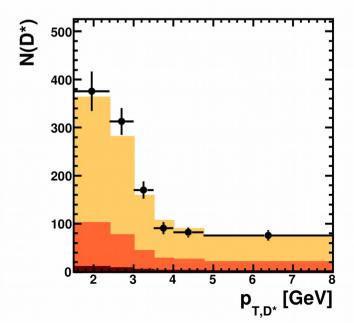

H1-HERA 2 data

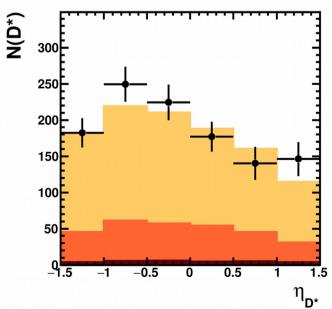

$$L_{int} \sim 280 \text{ pb}^{-1}$$

• D* reconstructed fully in:


$$D^{*+} \rightarrow D^{0} \pi_{slow}^{+} \rightarrow (K^{-} \pi^{+}) \pi_{slow}^{+} + C.C.$$
(BR ~ 2.6 %)


- fits of $\Delta m = m(D^*_{cand}) m(D^0_{cand})$
- large rapidity gap selection

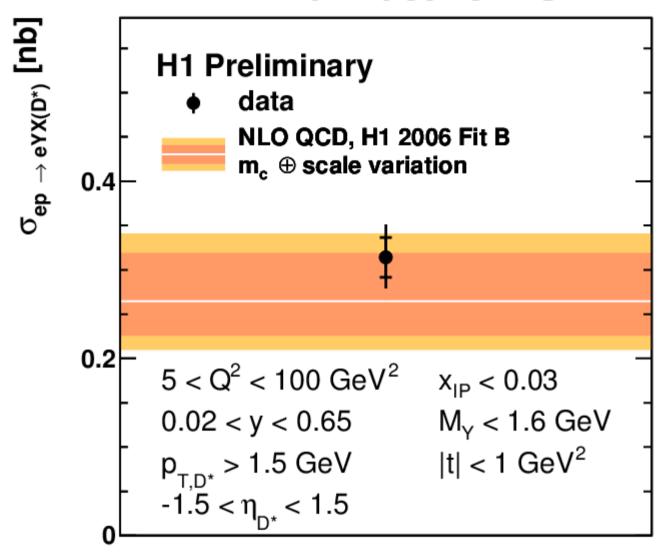

D* in diffractive DIS



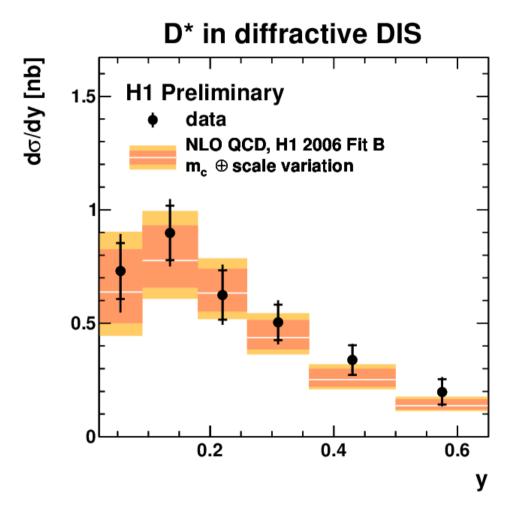
detector level control distributions

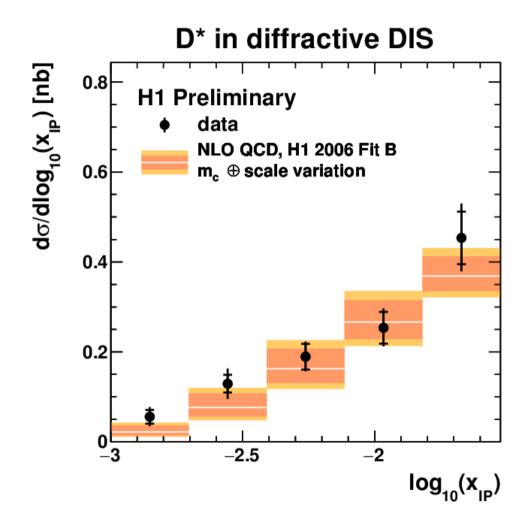
- correction of the data for detector effects relies on adequate description with simulation
- fits performed in each bin for data and MC contribution
- proton dissociation contribution $(M_Y > m_p)$
- non-diffractive background negligible
- weighting applied to correct shape and normalization agreement

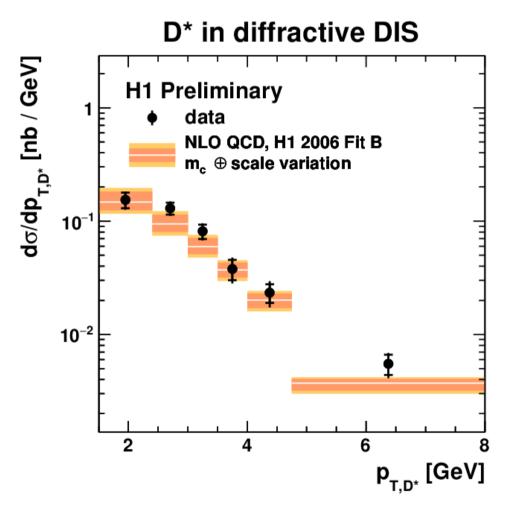
cross sections compared with

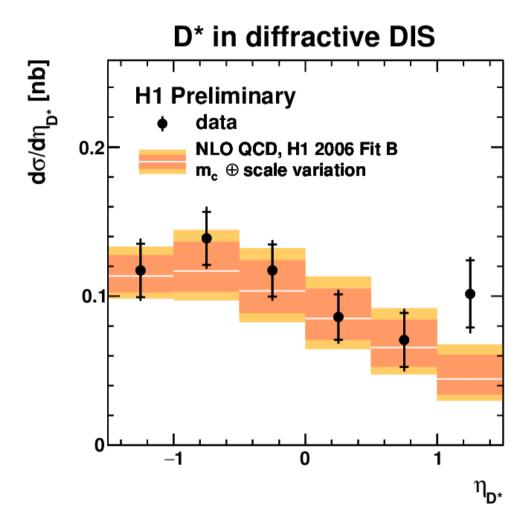

NLO QCD by HVQDIS in FFNS

- adapted for diffraction, using H1 2006 DPDF Fit B EUR. Phys. J. C73 (2013) 2311
- $\mu_r^2 = \mu_f^2 = m_c^2 + 4Q^2$
- charm mass m_c = 1.5 GeV
- Kartvelishvili fragmentation used
 - according to H1 measurement, Eur.Phys.J.C71 (2011) 1769


Theoretical uncertainties considered at the moment


- μ_r , μ_f varied by 0.5 and 2 simultaneously for th. uncertainty
- $1.3 < m_c < 1.7 \text{ GeV}$


D* in diffractive DIS



$$\sigma_{\text{ep} \to \text{e Y X}(D^*)} = 0.314 \pm 0.022 (\text{stat.}) \pm 0.028 (\text{syst.}) [\text{nb}]$$

Conclusions

new preliminary H1 measurement

- (1) New measurement of open charm production in diffractive DIS with larger dataset.
- (2) NLO QCD prediction (in FFNS) based on DPDFs measured from inclusive H1 data, agree well within errors with measured cross sections new test of collinear factorization validity.
- (3) Charm fragmentation function with Kartvelishvili parameterization determined in previous H1 (non-diffractive) analysis, <u>supports</u> <u>universality of fragmentation</u>.
- (4) Final measurement of cross sections might serve as an input to DPDF fits.

Backup

Measurement of $D^{*\pm}$ Meson Production and Determination of $F_2^{c\bar{c}}$ at low Q^2 in Deep-Inelastic Scattering at HERA Eur.Phys.J.C71 (2011) 1769

RAPGAP			
Parameter name	Central value	Variation	
Charm mass	$m_c = 1.5 \text{ GeV}$		
Renormalisation scale	$\mu_r = \sqrt{Q^2 + 4m_c^2 + (p_T^*)^2}$		
Factorisation scale	$\mu_f = \sqrt{Q^2 + 4m_c^2 + (p_T^*)^2}$		
Fragmentation	$\alpha = 10.3 \text{ for } \hat{s} < \hat{s}_{threshold}$ $\alpha = 4.4 \text{ for } \hat{s} > \hat{s}_{threshold}$ $\hat{s}_{threshold} = 70 \text{ GeV}^2$	$8.7 < \alpha < 12.2$ $3.9 < \alpha < 5.0$ $50 < \hat{s}_{threshold} < 90 \text{ GeV}^2$	
PDF	CTEQ6.6M	CTEQ6LL	

HVQDIS			
Parameter name	Central value	Variation	
Charm mass	$m_c = 1.5 \mathrm{GeV}$	$1.3 < m_c < 1.7 \text{ GeV}$	
Renormalisation scale	$\mu_{r,0} = \sqrt{Q^2 + 4m_c^2}$	$1/2 < \mu_r/\mu_{r,0} < 2$	
Factorisation scale	$\mu_{f,0} = \sqrt{Q^2 + 4m_c^2}$	$1/2 < \mu_r/\mu_{r,0} < 2$ $1/2 < \mu_f/\mu_{f,0} < 2$	
Fragmentation	$\alpha = 6.1 \text{ for } \hat{s} < \hat{s}_{threshold}$ $\alpha = 3.3 \text{ for } \hat{s} > \hat{s}_{threshold}$ $\hat{s}_{threshold} = 70 \text{ GeV}^2$	$5.3 < \alpha < 7.0$ $2.9 < \alpha < 3.7$ $50 < \hat{s}_{threshold} < 90 \text{ GeV}^2$	
PDF	CT10f3	MSTW2008f3	
Fragmentation fraction	$f(c \to D^*) = 23.8 \pm 0.8\%$ [37]		