eA physics at the LHeC DIS2016

Ilkka Helenius on behalf of the LHeC Study Group

Lund University Department of Astronomy and Theoretical Physics

12.4.2016

Outline

- ► Large Hadron Electron Collider
 - Kinematics
- Nuclear PDFs
 - Current data constraints
 - Present uncertainties
 - Impact of LHeC data
- ► Other e+A physics
 - Small-x physics
 - Jet production and hadronization
- Summary & Outlook

Thanks to

- Nestor Armesto (Univ. of Santiago de Compostela)
- Hannu Paukkunen (Univ. of Jyväskylä)

Introduction

Large Hadron Electron Collider (LHeC) [CDR: arXiv:1206.2913]

 \blacktriangleright LHC proton/ion beam + new e^{\pm} accelerator

- $E_{\rm p}=7\,{\rm TeV}$ (corresponds to $E_{\rm Pb}=2.76\,{\rm TeV}$), $E_{\rm e}=60\,{\rm GeV}$
- Synchronous p+p and e+p (A+A and e+A) operation
 - e+p: $16 \cdot 10^{33} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ (post-CDR)
 - $e+A(per nucleon): 5 \cdot 10^{31} cm^{-2} s^{-1} (updated: few \cdot 10^{32} cm^{-2} s^{-1})$
- Further in the future: FCC-he ($E_{\rm p} = 50 \, {\rm TeV}, E_{\rm e} = 60 \, {\rm GeV}$)

• e+p:
$$9 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$
, e+Pb: $9 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Deep inelastic scattering (DIS)

Cross section

$$\frac{\mathrm{d}\sigma^{\mathrm{DIS}}}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha_{\mathrm{EM}}^2}{Q^4} \frac{1}{x} \left[xy^2 F_1(x,Q^2) + (1-y) F_2(x,Q^2) \right]$$

- Measured structure functions $F_i(x, Q^2)$ can be directly related to parton distribution functions (PDFs)
- Also other interesting (non-inclusive) measurements in e + p/A!

Nuclear PDFs

Structure functions modified in nuclear collisions:

- ► Modifications absorbed into *process independent* nuclear PDFs: $f_i^A(x,Q^2) = R_i^A(x,Q^2) f_i(x,Q^2)$
- Global DGLAP analyses (EPS09, DSSZ, nCTEQ, HKN07)
 - Test factorization of nuclear effects
 - Provide the nuclear modifications $R_i^A(x,Q^2)$

▶ DIS, DY and inc. hadrons:

- Brahms data not included to fits
- Lower Q² cut varies between analyses (EPS09 cut shown)

Neutrino DIS:

- Included only to DSSZ so far
- Provides flavor separation

▶ DIS, DY and inc. hadrons:

- Brahms data not included to fits
- Lower Q² cut varies between analyses (EPS09 cut shown)

• Comparison to proton PDF fits:

- Much broader reach due to HERA and LHC data
- p+Pb data will improve kinematic reach of nPDF analyses

▶ DIS, DY and inc. hadrons:

- Brahms data not included to fits
- Lower Q² cut varies between analyses (EPS09 cut shown)

• The expected coverage of LHeC:

- LHeC data would provide a huge improve for the kinematic reach!
- ► e+A much cleaner measurement than p+A

▶ DIS, DY and inc. hadrons:

- Brahms data not included to fits
- Lower Q² cut varies between analyses (EPS09 cut shown)

The expected coverage of FCC-eA:

- Further extension of kinematics
- Large electron energy requires large acceptance (here 1° for the electron)

Uncertainties in the current nPDF fits

[nCTEQ arXiv:1509.00792 [hep-ph]]

- nCTEQ15 analysis provides somewhat larger uncertainties
 [A. Kusina on Wednesday at 11:40]
- Recent p+Pb data from LHC constrains nPDFs mostly at x > 0.01
 - See e.g. [arXiv:1512.01528 [hep-ph]]
- ⇒ No significant improvements at small-x from present LHC data
 - direct γ at large η would help
 [JHEP 1409 (2014) 138]

Questions

- ► Are the small-x uncertainties realistic (no direct constraints x ≤ 0.01)?
- Impact of the LHeC data?

Functional forms

The fit function in EPS09:

$$R^{\text{EPS09}}(x) = \begin{cases} a_0 + (a_1 + a_2 x) (e^{-x} - e^{-x_a}) & x \le x_a \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & x_a \le x \le x_e \\ c_0 + (c_1 - c_2 x) (1 - x)^{-\beta} & x_e \le x \le 1 \end{cases}$$

(power-law parametrization of A-dependence at x_a , x_e , and $x \to 0$)

▶ Very little freedom at small x — need to extend this for LHeC

Functional forms

More flexible form

► Replace the small-*x* part with

$$R(x \le x_a) = a_0 + a_1(x - x_a)^2 + \sqrt{x}(x_a - x) \left[a_2 \log\left(\frac{x}{x_a}\right) + a_3 \log^2\left(\frac{x}{x_a}\right) + a_4 \log^3\left(\frac{x}{x_a}\right) \right]$$

The bias at small x should be significantly reduced

The fit framework

Baseline setup

- ▶ New, more flexible, small-*x* behaviour
- Same data as in EPS09 (DIS, DY, inclusive π^0)
- CTEQ 6.6 proton PDFs
- Flavour-independent nuclear modifications at $Q_0 = 1.3 \text{ GeV}$
- NLO cross sections

The fit framework

Baseline setup

- ▶ New, more flexible, small-*x* behaviour
- Same data as in EPS09 (DIS, DY, inclusive π^0)
- CTEQ 6.6 proton PDFs
- Flavour-independent nuclear modifications at $Q_0 = 1.3 \text{ GeV}$
- NLO cross sections

How to study impact of new data

- 1. Generate "pseudodata" corresponding the expected measurement
- 2. Add the pseudodata to global analysis on top of existing data
- 3. Perform a re-analysis and compare the results

LHeC pseudodata

[Max Klein]

 \blacktriangleright Samples of neutral current DIS reduced cross section in $e{+}p$ & $e{+}Pb$

$$\sigma_{\rm reduced} = \frac{xQ^4}{2\pi\alpha_{\rm EM}^2 Y_+} \frac{{\rm d}^2\sigma^{DIS}}{{\rm d}x{\rm d}Q^2} \quad {\rm where} \quad Y_+ = 1 + (1-y)^2$$

were generated in the kinematic window

- ▶ $10^{-5} < x < 1$
- $2 < Q^2 < 10^5 \, {\rm GeV^2}$
- Nuclear modifications from EPS09
- ▶ Realistic fluctuations assuming $\mathcal{L}_{ep} = 10 \, \mathrm{fb}$, $\mathcal{L}_{ePb} = 1 \, \mathrm{fb}$ (per nucleon)

• The baseline fit without the LHeC data

- The error bands hugely exceed the expected data uncertainties
- ► The offset between the data and fit at large-x due to "optimal" normalization factor f ~ 1.1 for the data (new baseline ≠ EPS09)

 Drastic reduction of nPDF-originating uncertainties when LHeC data is included!

Impact to the nPDF uncertainties

 \blacktriangleright Significant reduction of small-x uncertainties for gluons and sea quarks

Impact to the nPDF uncertainties

- \blacktriangleright Significant reduction of small-x uncertainties for gluons and sea quarks
- ► Scale evolution shrinks the gluon uncertainties further

Impact to the nPDF uncertainties

- \blacktriangleright Significant reduction of small-x uncertainties for gluons and sea quarks
- Scale evolution shrinks the gluon uncertainties further
- ► Estimated precision would substantially improve the accuracy of pQCD baseline for LHC and FCC heavy-ion physics at $p_T \gtrsim 3 \text{ GeV/c}$

Small-x physics

- \blacktriangleright Linear QCD-evolution leads to large number of gluons at small x
- Breakdown at high densities \Rightarrow saturation?

 $\blacktriangleright \ Q_s^2 \propto A^{1/3} x^{-0.3} \Rightarrow$ saturation more pronounced at large A

Inclusive hadrons in p+Pb (NLO):

- Hard to be sensitive to small-x physics in p+Pb (direct γ at η > 3 should help)
- \Rightarrow LHeC should be sensitive to saturation physics especially with $\mathrm{e}{+}A$

Jets in e+A

• Photoproduction of jets: direct and resolved (γ PDFs) processes

• Large E_T jets also in e+A

- Useful to study parton dynamics and photon structure
- Not all theoretical uncertainties considered yet

Hadronization in nuclear medium

- LHeC provides clean environment to study hadron production with nuclear target ("cold nuclear matter")
- Low energy:
 - hadronization happens inside the nuclear medium
 - pre-hadronic absorbtion?
- High energy:
 - hadronization happens outside the nuclear medium
 - partonic evolution inside the medium

- Benchmark for hadron production in A+A and p+A
- ► See Phys.Rev. D81 (2010) 054001 for medium modified FF analysis

Summary

Nuclear PDFs

- ► Data constraining current nPDF fits quite limited in kinematic reach
- \blacktriangleright Small-x uncertainties much larger than in the current parametrization
 - ► Small-*x* enhancement allowed by the data (theoretically unfavored)
 - Global analyses should reflect the data, not fitters physical intuition!
- Recent p+Pb data from LHC will improve fits at $x \gtrsim 0.01$
- \blacktriangleright LHeC would provide very precise data down to $x\sim 10^{-5}$
- ► Study constraints for flavor dependence from charged-current data

Other e+A physics

- \blacktriangleright Clean environment to study small-x phenomena such as saturation
- ► Photoproduction of jets can be used to study photon (nuclear) PDFs
- Cold nuclear matter effects to hadron production
- + Topics not covered here (Diffraction, Vector Mesons, ...) that would be useful to unravel saturation and to determine nuclear GPDs

Backup

Recent nPDF analyses

	HKN07	EPS09	DSSZ	nCTEQ prelim.
Ref.	Phys. Rev. C76 (2007) 065207	JHEP 0904 (2009) 065	Phys.Rev. D85 (2012) 074028	arXiv:1307.3454
Order	LO & NLO	LO & NLO	NLO	NLO
Neutral current e+A / e+d DIS	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan dileptons in p+A / p+d	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions in d+Au / p+p		\checkmark	\checkmark	
Neutrino-nucleus DIS			\checkmark	
Q ² cut in DIS	1GeV	1.3GeV	1GeV	2GeV
# of data points	1241	929	1579	708
Free parameters	12	15	25	17
Error sets available		\checkmark	\checkmark	\checkmark
Error tolerance $\Delta \chi^2$	13.7	50	30	35
Baseline	MRST98	CTEQ6.1	MSTW2008	CTEQ6M
Heavy quark treatment	ZM_VFNS	ZM_VFNS	GM_VFNS	GM_VFNS
			EC.	

[from H. Paukkunen]

Vector Meson (VM) production

 The *t*-differential cross-section of exclusive diffractive VM production can be related to impact parameter
 Transverse profile of hadron/nucleus can be extracted

Elastic VM production

Predictions available showing large saturation \Rightarrow

Uncertainties in the current nPDF fits

Comparison between different fits:

[Nucl.Phys.A926 (2014) 24-33]

- nCTEQ analysis provides somewhat larger uncertainties [Talk by A. Kusina on Wednesday at 11:40 (WG1)]
- Recent p+Pb data from LHC constrains nPDFs mostly at x > 0.01
 - ▶ e.g. high-p_T jets [Nucl.Phys. A931 (2014) 331-336]
 - \Rightarrow No significant improvement at small values of x
- Fairly small uncertainties in the unconstrained region
- Impact of the LHeC data?

Charged hadron production

Nuclear modification factor at forward rapidities for charged hadrons

- Data induces tension in global analysis
- NLO calculation agree with the d+Au spectra but not with the p+p baseline