Measurements of differential Drell-Yan cross sections with the ATLAS detector

Elena Yatsenko (LAPP/CNRS) on behalf of the ATLAS collaboration

DIS 2016

April 13, 2016 Hamburg

Elena Yatsenko

Introduction

 Below and above the Z mass peak the Drell-Yan cross-section is dominated by a virtual photon exchange.

 These regions have different sensitivity to the up-type, down-type and anti-quark densities.

Low mass Drell-Yan measurement at 7 TeV JHEP 06 (2014) 112

The measurement is made with two setups:

- 1. Nominal: $26 < M_{\ell\ell} < 66$ GeV ($\ell = \mu, e$) with 1.6 fb⁻¹ 2011 data
- 2. *Extended*: $12 < M_{\mu\mu} < 66$ GeV with 35 pb⁻¹ of 2010 data.
- Precision: 1.6 3.0% (nominal), 7 13% (extended)

 $\ensuremath{\textbf{QCD}}$ analysis of the data is performed by including the data in the NLO and NNLO fits of HERA DIS data.

High mass Drell-Yan measurement at 7 TeV Phys.Lett.B 725(2013)

- The high mass Drell-Yan region was first measured by ATLAS at $\sqrt{s} = 7$ TeV using 4.9 fb⁻¹ of 2011 data.
- Single differential measurement in mass range 116 1500 GeV in electron channel.
- Precision: Systematic unc. 4.2% 9.8% Statistical unc. 1.1% - 50%.

High mass Drell-Yan measurement at 8 TeV

"Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at $\sqrt{s}=8~{\rm TeV}$ with the ATLAS detector" *new

 $116 < M_{\ell\ell} < 1500 \; {
m GeV} \; (\ell=\mu,e)$

Goals of the measurement:

- 1. Double differential cross-section $\frac{d^2\sigma}{dM_{\ell\ell}d|y_{\ell\ell}|}$ and $\frac{d^2\sigma}{dM_{\ell\ell}d|\Delta\eta_{\ell\ell}|}$
- 2. $M_{\ell\ell}$ differential cross-section
- Extension of (x, Q²) kinematic plane towards higher x
 => Possibility to constrain poorly known large x anti-quark PDFs.
- Sensitivity to photon induced process $\gamma\gamma \rightarrow \ell\ell$ => Sensitivity to the largely unconstrained photon PDFs.

High mass Drell-Yan: selection

The cross-section for the <u>Drell-Yan</u> and <u>photon induced</u> processes is measured in the electron and <u>muon</u> channels.

• 20.3 fb^{-1} of $\sqrt{s} = 8$ TeV data Fiducial region: • 116 < $M_{\ell\ell}$ < 1500 GeV ($\ell = \mu, e$) • $p_T^{\ell,\text{lead.}} > 40$ GeV, $p_T^{\ell,\text{sub-lead.}} > 30$ GeV • $|\eta^{\ell}| < 2.5$

The measured dimensions:

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}M_{\ell\ell}\mathrm{d}|\mathbf{y}_{\ell\ell}|}$:

- sensitivity for PDF constrains in a new kinematic region (x from 10^{-3} to ~ 1).
- Increase of photon induced process contribution at small $|y_{\ell\ell}|$ and large $M_{\ell\ell}$.

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}M_{\ell\ell}\mathrm{d}|\Delta\eta_{\ell\ell}|}$:

- is measured for the first time!
- Increase of photon induced process contribution at large $|\Delta \eta_{\ell\ell}|$ and large $M_{\ell\ell}$.

High mass Drell-Yan: uncertainties of the measurement

The dominant sources of uncertainties:

- Electron channel
 Determination of the multijet and W + jets background (1% - 5%).
- Energy scale: < 0.5% 4%</p>
- Top background estimate (up to 4%).

Muon channel

- Top background estimate (up to 3.5%)
- Reconstruction efficiency correction: 0.5% - 1%.
- Muon momentum scale calibration 0.4%.

Statistical uncertainty is significantly reduced 1.1% - 50% at 7 TeV \rightarrow 0.3% - 17% at 8 TeV

Systematic uncertainty 0.5% - 3%.

Experimental precision of the combined cross-section is better than 1% at low $M_{\ell\ell}$ (excl. luminosity uncertainty of 1.9%).

Precision of <u>double-differential</u> measurements: 1% - 7% (syst.), 1% - 36% (stat.).

Two channels are combined using

High mass Drell-Yan: results and comparison to theory I/II

The measured cross-sections are compared to NNLO QCD predictions using FEWZ 3.1:

- MMHT14NNLO PDF
- NLO EW corrections are included
- Photon induced contribution is included (at LO), using NNPDF2.3QED photon PDF
- G_{μ} electroweak scheme
- $\mu_R = \mu_F = M_{\ell\ell}$

High mass Drell-Yan: results and comparison to theory II/II

- The measured cross-sections are compared to theoretical predictions using a selection of recent PDFs.
- Theory uncertainties are larger than measurement uncertainties
 potential for PDF constraints.
- Photon induced contribution reaches 15%.

High mass Drell-Yan: photon PDFs

- The measured data are compatible with all modern proton PDFs, when photon PDF is fixed to NNPDF2.3QED.
- However, the data can yield more information on the photon PDF.

- An impact of the data on photon PDF is studied using Bayesian reweighting on MC replicas of NNPDF2.3QED with fixed MMHT14NNLO PDF.
- Each replica is weighted using χ² value, which indicates it's compatibility with the data.

• The observed significant reduction of uncertainties confirms the strong sensitivity of the data to the photon PDF.

- The ATLAS neutral current Drell-Yan measurements cover the invariant dilepton mass range between 12 and 1500 GeV.
- The measurements agree well with the NNLO QCD calculations corrected for higher-order electroweak effects.
- High mass DY measurement at 8 TeV: the theoretical uncertainties arising from PDFs, the choice of scales and a variation of α_s are found to be larger than the measurement uncertainties, indicating potential for proton PDF constrains.
- The potential of the High mass Drell-Yan data for dramatic reduction of **photon PDF** uncertainties is demonstrated.

BACKUP SLIDES

High mass Drell-Yan: background estimate

- The dominant source of background is tt
 and Wt production: 9% in electron channel, 9% in muon channel. MC estimate is cross-checked with electron-muon pairs in data.
- Multijets with W + jets are sub-dominant contributions: 4% in electron channel, < 1% in muon channel. Data-driven technique is used for the estimate of this background.

HMDY at 8 TeV: kinemtaic distributions in μ channel

15/11