

Small x physics at the LHeC and FCC-he

Claire Gwenlan, Oxford

for the LHeC study group, http://cern.ch/lhec

with special thanks to: Nestor Armesto, Max Klein, Anna Stasto and Graeme Watt

DIS16, DESY, Hamburg, Germany

HERA legacy

HERA, a success story: established detailed structure of proton, including strong rise of gluon at small x; large contribution from diffraction (10% of DIS events); and much more (jets, αs, γ structure c, b, BSM limits ...)

BUT: no eA/eD, limited lumi at high x/for searches, limited kinematic reach at low x, ...

DIS: past, present and future

Lepton–Proton Scattering Facilities

many other physics goals, see also other LHeC talks in this workshop:P. Newman (LHeC project and detector); A. Cooper-Sarkar (PDFs); I. Helenius (eA); O. Behnke (Higgs)

LHeC kinematics

why is small x interesting?

HERA: observation of strong rise of proton structure functions towards small x driven by growth of gluon density QCD rad. of partons, linear evolution (DGLAP)

- at small x, potentially large logs in 1/x; evolution must be modified (EG. BFKL)
- and surely gluon density cannot rise forever!? unitarity of scattering amplitude
- gluon recombination; saturation; non-linear effects in evolution?

LHeC can unambiguously access this novel regime with unique access to dense regime at fixed, semi-hard Q² while decreasing x

"I firmly believe that the small x problem ... is the most interesting problem in QCD" A.H. Mueller, 1990

status of small x

(see eA talk, I. Helenius)

 \mathbf{Z}

- three pQCD-based alternatives to describe small x ep and eA data differences at moderate Q^2 (> Λ^2 QCD) and small x
- DGLAP (fixed order perturbation theory)
- resummation schemes (BFKL, CCFM, ABF, CCSS, ...)
- saturation (EG. in context of dipole models)
- non-linear effects are density effects: ۲

two-pronged approach at LHeC: **decrease x** / **increase** A •

Vd 39, No 7 0 75001

July 20 12

small x physics at the LHeC

http://cern.ch/lhec

Nu

ISSN 0954-3899

CDR: arXiv:1206.2913

193 experimentalists and theorists from 76 institutes supported by CERN, ECFA, NuPECC

Jour	nal c	of Phy	vsics (G
Nuclea	r and P	article	Physics	
Volume 39	Number 7	July 2012	Article 07500	1
A Large Ha	dron Electro	on Collider	at CERN	
Report on the Machine and D LHoC Study Gro	Physics and De etector SUD	esign Cencepts	for	
10000000000000000000000000000000000000	10.000			

iopscience.org/jphysg **IOP** Publishing

4	Phy	sics at	High Parton Densities
	4.1	Physic	s at small x
		4.1.1	High energy and density regime of QCD
		4.1.2	Status following HERA data
		4.1.3	Low- x physics perspectives at the LHC $\ldots \ldots \ldots \ldots \ldots \ldots$
		4.1.4	Nuclear targets
	4.2	Prospe	ects at the LHeC
		4.2.1	Strategy: decreasing x and increasing A
		4.2.2	Inclusive measurements
		4.2.3	Exclusive production
		4.2.4	Inclusive diffraction
		4.2.5	Jet and multi-jet observables, parton dynamics and fragmentation $\ .$
		4.2.6	Implications for ultra-high energy neutrino interactions and detection

further publications:

O. Bruening, M. Klein Mod. Phys. Lett. A28 (2013) 16, 133001

> LHeC study group arXiv:1211.5102

LHeC study group arXiv:1211.4831

Parton Distribution Functions

PDF luminosities

10⁴

0.8^t

10

10²

м_х [GeV]

constraints on gluon at low x

LHeC: gluon measurement down to below $x=10^{-5}$

additional measurement of longitudinal structure function would further improve • 9

constraints on gluon at low x

FCC-he vs LHeC vs HERA

FCC-eh can further improve, and explore low-x phenomenology

sensitivity to effects beyond DGLAP

• measurements of F2 and FL, sensitive probe of novel small x QCD dynamics

LHeC F2 and FL data will have discriminatory power on models

He

sensitivity to effects beyond DGLAP

• measurements of F₂ and F_L, sensitive probe of novel small x QCD dynamics

DGLAP fits cannot **simultaneously** accommodate precise LHeC F2 <u>and FL if saturation</u> effects included

(F2 and F2c could also work as an alternative)

simulated LHeC data include saturation effects at low x

implications for UHEvs

diffraction

with the LHeC:

 tests of factorisation in extended kinematic range (ep and eA), and constraints on diffractive PDFs (DPDFs)

(factorisation proven at high scales; diffractive structure functions are convolutions of DPDFs and coefficient functions)

- new domain for diffractive masses
- sensitivity to **non-linear** or **saturation** phenomena
- study relation between **diffraction** in ep and **shadowing** in eA

diffractive kinematics and selection

- significant extension of diffractive kinematic region c.f. HERA
- methods for selecting diffractive events:
- 1. large rapidity gap selection (LRG) access to small xp (up to 0.01 for ηmax< 5)
- 2. leading proton tagging, could be used for larger $x_{\mathbb{P}}$

two methods complementary, with some overlap in acceptance

diffractive mass distribution

RAPGAP simulation

- compared with HERA, huge extension in Mx reach (low values of β)
- new domain of diffractive masses
- Mx can include beauty, W, Z, new and exotic states EG. 1-- odderon

diffractive structure functions

- LHeC pseudodata; simulated using large rapidity gap and leading proton methods (Ee=150 GeV, L=2fb⁻¹)
- stat. uncerts. < 1%
- acceptance of detector matters

large extension in kinematic reach compared to HERA

diffractive SFs and non-linear dynamics

 LHeC could discriminate between range of models with and without saturation effects

possibility to study **saturation** and its **realisation**

ipsat, **bCGC**: dipole models incl. saturation effects H1 fit B: linear extrapolation from HERA DPDFs

exclusive diffraction

exclusive diffractive processes, such as **exclusive vector meson producton** and deeply virtual compton scattering (DVCS) provide information on **proton structure** and **small x dynamics**, complementary to that from inclusive measurements

 access to Generalised Parton Distributions (GPDs)

(encoding 3d structure of nucleon)

t-dependence gives
information about
impact parameter
profile (spatial distribution)

 sensitivity to non-linear evolution and saturation effects

elastic vector meson production

- elastic J/psi production sensitive to saturation effects
- **b-Sat dipole model** (Golec-Biernat, Wuesthoff, Bartels, Motyka, Kowalski, Watt)
- eikonlised: with saturation
- 1-Pomeron: no saturarion

- large effects, even for t-integrated observables
- different behaviour as a function
 of Yp centre-of-mass energy, W,
 depending on whether
 saturation included or not

LHeC can distinguish these different scenarios

elastic vector meson production

• elastic J/psi production sensitive to saturation effects

with ALICE and LHCb data

Armesto and Rezaeian (arXiv:1402.4831)

• ultra-peripherial collisions at the LHC and beyond are a (less precise) alternative

elastic vector meson production

- elastic J/psi production sensitive to saturation effects
- **b-Sat dipole model** (Golec-Biernat, Wuesthoff, Bartels, Motyka, Kowalski, Watt)
- eikonlised: with saturation
- 1-Pomeron: no saturarion

- large effects, even for t-integrated observables
- different behaviour as a function of Yp centre-of-mass energy, W, depending on whether saturation included or not

LHeC can distinguish these different scenarios

simulated data from extrapolated fit to HERA data

elastic VM production – t dependence

- measurements **differential in t** give gluon transverse mapping of hadron/nucleus
- cross section in bins of W and t
- even for small t values and smallest energies, significant differences between models (effect increases with increasing W and t)
- LHeC can discriminate

larger t: increased sensitivity to small impact parameters where density of interacting region highest

hadron

virtual photon

elastic VM production – dips in t profile

• measurements **differential in t** give gluon transverse mapping of hadron/nucleus

- t-dependence is a Fourier Transform of the impact parameter profile
- characteristic dips a feature of saturation models
- positions of dips depend on energy and scale
- within LHeC-sensitive range

deeply virtual compton scattering

- DVCS: 'golden channel' for accessing **GPDs**
- clean; no vector meson wave-function uncerts.
- sensitive to **singlet quark** as well as **gluon**
- Fourier Transform of GPDs gives transverse scan of hadron
- sensitive to dynamics EG. non-linear effects

diffractive dijet production in DIS

- diffractive dijet and open heavy flavour production offer possibilities for:
 - checking **factorisation** in hard diffraction
 - constraining diffractive PDFs

(sensitive to gluon; complementary information c.f. inclusive diffraction)

24

e(k')

e(k)

diffractive dijets in photoproduction

-0.2 25 loa x

jet observables:

- dijet azimuthal decorrelations and forward jets (Q~pt) can shed light on mechanism of QCD radiation
- kt ordered (DGLAP)
- kt unordered (BFKL)
- saturation?

(if incoming gluon has sizeable kt, jets no longer back-to-back; must balance kt of incoming virtual gluon)

jet observables:

- LHeC could perform measurements with large rapidity separations and different
- (Q,pt) combinations to systematically test parton dynamics

26

summary

• with an LHeC (and FCC-he) at CERN:

- unprecedented access to small x in ep and eA
- high precision tests of collinear factorisation and determination of PDFs
- novel sensitivity to physics beyond standard pQCD
- stringent tests of QCD radiation
- access to 3d structure of hadrons/nucleus at small x

with ep and eA (see also talk by I. Helenius), LHeC can answer the question of saturation/ non-linear dynamics

LHeC vs LHC kinematics

FCC-eh kinematics

parton distribution functions

• parton-parton luminosities @ 13 TeV

PDFs at low x

LHeC PDFs with released assumptions

• LHeC does not need to rely on 'usual' constraint that u=d at low x, which may not be valid

elastic VM production – dips in t profile

J/ψ, φ, **ρ**:

Armesto and Rezaeian (arXiv:1402.4831)

- dips in t move to lower values for lighter vector mesons
- possibility to test in ultra-peripheral collisions at the LHC?

diffractive dijet production in DIS

- diffractive dijet and open heavy flavour production offer possibilities for:
 - checking factorisation in hard diffraction
 - constraining diffractive PDFs (DPDFs)

e(k')

diffractive dijets in photoproduction

- H1: observes suppression, but independent of xY
- **ZEUS**: consistent with no suppression (except in lowest x**Y** bin)
- (measurements are in slightly different phase space)

photoproduction cross section

- small angle electron detector 62m from the interaction point: $Q^2 < 0.01 \text{ GeV}, y \sim 0.3 \Rightarrow W \sim 0.5 \sqrt{s}$
- substantial enlargement of lever arm in W

odderon

• **odderon**: C-odd exchange contributing to particle-antiparticle difference in cross section, searched for in: $\gamma^{(\star)}p \to Cp$, where $C = \pi^0, \eta, \eta', \eta_c \dots$ or through odderon-pomeron interference

$$A(Q^{2}, t, m_{2\pi}^{2}) = \frac{\int \cos\theta \, d\sigma(W^{2}, Q^{2}, t, m_{2\pi}^{2}, \theta)}{\int d\sigma(W^{2}, Q^{2}, t, m_{2\pi}^{2}, \theta)} = \frac{\int_{-1}^{1} \, \cos\theta \, d\cos\theta \, 2 \, \operatorname{Re}\left[\mathcal{M}_{P}^{\gamma t}(\mathcal{M}_{O}^{\gamma t})^{*}\right]}{\int_{-1}^{1} \, d\cos\theta \, \left[|\mathcal{M}_{P}^{\gamma t}|^{2} + |\mathcal{M}_{O}^{\gamma t}|^{2}\right]}$$

expect sizeable charge asymmetry

