

Multi-boson production and searches for anomalous gauge couplings

(CMS Run I legacy)

Jing Li Peking University, Beijing, China IPHC, Strasbourg, France

On behalf of the CMS Collaboration

12th April 2016

XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2016) 11-15 April 2016 Desy Hamburg Germany

Introduction

Rich results from Multi-boson measurement in Run1

- Important backgrounds to Higgs and New Physics
- Crucial SM tests
 - deeper into VVV

- vector boson scattering (VBS) and vector boson fusion (VBF): tests of SM unitarity at high energy
- Many first measurements
- High-tail enhancements: Sensitive to anomalous Triple (Quartic) Gauge Couplings

EW SSWW

Summary of CMS Run I

results

	XS	Differential XS	aT(Q)GC
Wy(Ivy)	7 TeV		7 TeV
EW Wyjj	8 TeV		8 TeV
Zγ(IIγ)	7 TeV, 8 TeV	8 TeV	7 TeV, 8 TeV
Ζγ(ννγ)	7 TeV, 8 TeV		7 TeV, 8 TeV
EW Zγjj	8 TeV		8 TeV
WW(lvlv)	7 TeV, 8 TeV	7 TeV, 8 TeV	7 TeV, 8 TeV
WW(lvjj)	8 TeV	8 TeV	8 TeV
ZZ(4I)	7 TeV, 8 TeV	8 TeV	7 TeV, 8 TeV
ZZ(2l2v)	7 TeV, 8 TeV		7 TeV, 8 TeV
WZ(3lv)	7 TeV, 8 TeV		
WV	7 TeV		7 TeV
VZ(Vbb)	7 TeV		
ΥY	7 TeV	7 TeV	
$\gamma\gamma \to WW$	7 TeV, 8 TeV		7 TeV, 8 TeV
WVγ(lvjjγ)	8 TeV		8 TeV
Vyy	8 TeV		8 TeV

Red: new analysis that will introduced by this talk

4

SMP-14-016 submitted to EPJC arXiv: 1507.03268

Event selection:

- Two opposite-sign charged leptons
- Same-flavor final state: DY MVA, |m_u-m_z| > 15 GeV to suppress DY bkg
- Large E_T^{miss}
- top-quark veto, 3rd lepton veto
- 0-jet and 1-jet category (first time the 1-jet category is used in the WW measurement at LHC)

Background: Top pair (dominant), V+jets, DY Z/γ*, WZ/ZZ/VVV, H->W⁺W⁻

Dominant Systematic Uncertainty: jet veto, lepton efficiency uncertainties

WWγ and WWZ aTGC measured with m_u

W⁺W⁽IvIv)

Total cross section (zero/one jet)

 $\sigma_{
m W^+W^-} = 60.1 \pm 0.9$ (stat.) ± 3.2 (exp.) ± 3.1 (th.) ± 1.6 (lum.) pb

Good agreement with theoretical prediction $\sigma^{NNLO}(pp \rightarrow W^+W^-) = 59.8^{+1.3}_{-1.1} pb$ arXiv:1408.5243

7 TeV and8 TeV SMP-12-016

EPJC 75 (2015) 511

Event selection:

- Two leptons with $|m_{\parallel}-m_{_{I}}| < 7.5 \text{ GeV}$
- Reduced $E_{T}^{miss} > 65 \text{ GeV}$
- 0.4 < E_{τ}^{miss} balance < 1.8
- b-tag veto, jet veto, 3rd lepton veto
- Background:

DY Z+jets (dominant), WW/WZ, top

• Dominant Systematic:

DY bkg normalization, jet energy scale

- First measurement at 8 TeV
- Less than 1 σ from the SM predictions
- ZZZ and γ ZZ aTGC measured with $p_{\tau, II}$

ZZ(212v)

7 TeV : $\sigma(pp \to ZZ) = 5.1^{+1.5}_{-1.4} \text{ (stat)} {}^{+1.4}_{-1.1} \text{ (syst)} \pm 0.1 \text{ (lumi) pb},$

8 TeV : $\sigma(pp \rightarrow ZZ) = 7.2^{+0.8}_{-0.8} \text{ (stat)} {}^{+1.9}_{-1.5} \text{ (syst)} \pm 0.2 \text{ (lumi) pb.}$

SM prediction: NLO QCD & NLO EW corrections,

 $6.2^{+0.3}_{-0.2}$ pb (7.6 $^{+0.4}_{-0.3}$ pb) at 7 (8) TeV.

JHEP12(2013)071,PhysRevD.88.113005

SMP-14-019 submitted to PLB

arXiv: 1602.07152

- Event selection: p₁^v > 145 GeV
 - E^{miss} > 140 GeV

Jet veto, lepton veto

Background:

 $-Wy \rightarrow lvy$ (dominant) – estimated using simulation & checked in control region - Large instrumental and non-collision backgrounds - estimated with data-driven methods

$Z\gamma(vv\gamma)$

ZZ γ and Z $\gamma\gamma$ aTGC measured with E_{T,v}

1000

Estimate
103 ± 21
60 ± 6
45 ± 14
25 ± 6
36 ± 3
269 ± 26
345 ± 43
630
361 ± 36

7

SMP-15-008

8 TeV

NEW

Event selection:

120 14 p^{y y} [GeV]

Auon Channe

120 14 p_7 [GeV] Electron Channel

$W_{\gamma\gamma}(I_{\gamma\gamma})/Z_{\gamma\gamma}(I_{\gamma\gamma})$

isvoverv

Background:

Jets from fragmentation misidentified as photons:
 estimated using data-driven method (two-dimensional template normalization)

 – Ζγγ as an irreducible background for Wγγ: estimated from MC prediction and validated by the Zγγ crosssection measurement
 Dominate Systematic:

- Wγγ: Misidentified jets, Zγγ theoretical cross section

- Zγγ: Misidentified jets

$$\sigma_{W^{\pm}\gamma\gamma}^{\text{fid}} \cdot \text{BR} \left(W \to \ell \nu \right) = 6.0 \pm 1.8 \,(\text{stat}) \pm 2.3 \,(\text{syst}) \pm 0.2 \,(\text{lumi}) \,\text{fb}$$

 $\sigma_{Z\gamma\gamma}^{\mathrm{fid}}$ · BR ($Z \rightarrow \ell \ell$) = 12.7 ± 1.4 (stat) ± 1.8 (syst) ± 0.3 (lumi) fb

Definition of W $^{\pm}\gamma\gamma$ Fiducial Region
$p_{\mathrm{T}}^{\gamma} > 25\mathrm{GeV}, \eta^{\gamma} < 2.5$
$p_{\mathrm{T}}^\ell >$ 25 GeV, $ \eta^\ell <$ 2.5
Exactly one candidate muon and two candidate photons
$m_{ m T}(\ell, u(m s))>40{ m GeV}$
$\Delta R(\gamma,\gamma) > 0.4$ and $\Delta R(\gamma,\ell) > 0.4$

Significance of 2.4 σ for Wγγ and 5.9 σ for Zγγ (discovery !)

```
\begin{array}{c} WW\gamma\gamma \ aQGC \\ measured \\ with \ p_{T} \ 8 \end{array}
```


Background: - QCD Wy+2 jets production: MC shape + data-driven normalization - Jets & electrons misidentified as photons: estimated using data-driven method (ratio/template)

> Jets misidentified as electrons: estimated using datadriven method (template) **Dominate Systematic:**

– QCD Wy+2 jets prediction

- Jets & electrons misidentification
- Jet energy scale & resolution

SMP-14-011

8 TeV

VBS

NEW

Event selection:

p_^Y > 22 GeV

 $p_{+}^{1} > 25 (30) \text{ GeV for } e(\mu)$

```
E_{miss} > 35 GeV
```

W_{mT} > 30 GeV

m, > 200 GeV

Items

û

 $|m_{ev} - m_{z}| > 10 \text{ GeV}$

EW Zyjj(llyjj)

- QCD Zy+2 jets production: MC shape + data-driven

- Jets misidentified as photons: estimated using datadriven method (ratio/template)

- QCD Zy+2 jets prediction

- Jets misidentified as photons

 $1.86^{+0.90}_{-0.75}(stat.)^{+0.34}_{-0.26}(sys.) \pm 0.05(lumi.)$ fb. Good agreement with theoretical LO prediction $1.27 \pm 0.11(scale) \pm 0.05(PDF)$ fb

CMS

Preliminary

WVyy and ZVyy aQGC measured with m_{zy}

10

19.7 fb⁻¹ (8 TeV)

Full CLs Observed

Full Clis Expected

Full CLs Expected ± 1c

Full CLs Expected ± 2σ

anomalous Triple (Quartic) Gauge Couplings

- The self-interaction of electroweak vector bosons is less well measured
- The presence of the aT(Q)GC provides sensitivity to new physics that can cause alterations of the coupling strength
- At hard tail of phase space, they increase cross section significantly

anomalous Triple (Quartic) Gauge Couplings

aT(Q)GCs are modelled as effective Larangians depending on some parameters:

Charged aTGCs WWy/WWZ

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_{\mu\nu}^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

5 parameters: $\Delta g_{1z}(=g_{1z}-1)$, $\Delta \kappa_z(=\kappa_z-1)$, $\Delta \kappa_\gamma(=\kappa_\gamma-1)$, λ_z , λ_γ LEP parametrization HISZ parametrization $\lambda \gamma = \lambda z = \lambda$ $\Delta \kappa_z = \Delta g_{1z} (\cos^2 \theta_w - \sin^2 \theta_w)$, $\Delta \kappa_z = \Delta g_{1z} \cos^2 \theta_w$, $\lambda_z = \lambda_\gamma$

NPB282 (1987) 253; PRD41 (1990) 2113

EFT parametrization $c_{WWW}^{2}/\Lambda^{2}, c_{W}^{2}/\Lambda^{2}, c_{B}^{2}/\Lambda^{2}$

Annals Phys. (2013) 335

Neutral aTGCs (Neutral TGCs not allowed in SM) $L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$ Zy channel: Zyy/ZZy h_3^{Z,Y}, h_4^{Z,Y} PRD47 (1993) 4889 ZZ channel: ZZy/ZZZ f_4^{Z,Y}, f_5^{Z,Y} NPB282 (1987) 253

Neutral and charged aQGCs WWyy/WWZy/ZZZy/ZZyy/Zyyy

SM Lagrangian can be extended with dimension 8 operators

Summary of CMS Run I results

	aTG	Limit Setting variable		
Wγ	WWγ	$λ_{\gamma}, Δ κ_{\gamma}$	Ε _τ γ	
EW Wyjj	WWγγ	$f_{_{T0-2}}/\Lambda^4$, $f_{_{T5-7}}/\Lambda^4$, $f_{_{M0-7}}/\Lambda^4$	p_{T}^{w}	
Zγ	ΖΖγ, Ζγγ	$h_3^{Z,\gamma}$, $h_4^{Z,\gamma}$	Ε _τ γ	
EW Zγjj	WVγγ, ZVγγ	$f_{_{T0-2}}/\Lambda^4$, $f_{_{T8,9}}/\Lambda^4$, $f_{_{M0-3}}/\Lambda^4$	m _{zγ}	
WW(lvlv)	WWy, WWZ	(EFF) $c_{WWW}^{}/\Lambda^2$, $c_{W}^{}/\Lambda^2$, $c_{B}^{}/\Lambda^2$ (8 TeV)	m _" (8 TeV)	
		$Λ_{_{ m V/Z}}, \Delta \kappa_{_{ m V/Z}}, \Delta g_{_{1Z}}$ (7 TeV)	p _T ^{I,lead} (7 TeV)	
EW SSWW	WWWW	f _{S0} , f _{S1}	m _"	
ZZ(4I/2I2v)	ZZZ, ZZγ	$f_4^{Z,\gamma}$, $f_5^{Z,\gamma}$	т ₄ / р _{т,แ}	
WZ	WWZ	$λ_z, Δκ_y$	p_{T}^{dijet}	
$\gamma\gamma \to WW$	WWyy	a_0^{W}/Λ^2 , a_C^{W}/Λ^2 , f_{M0-3}^{W}/Λ^4	$p_{T}^{dilepton}$	
WVγ	WWγγ, WZγγ	$\mathbf{a}_0^{\mathrm{W}}/\Lambda^2$, $\mathbf{a}_C^{\mathrm{W}}/\Lambda^2$, $\mathbf{f}_{_{T0}}/\Lambda^4$, $\mathbf{\kappa}_0^{\mathrm{W}}/\Lambda^2$, $\mathbf{\kappa}_C^{\mathrm{W}}/\Lambda^2$	Ε _τ ^γ	13
Vyy	WWγγ	$f_{T0-2}^{1}/\Lambda^{4}, f_{M2,3}^{1}/\Lambda^{4}$	$p_{T}^{Y,lead}$	

Charged aTGC: WWy

aTGC

aTGC Limits @95% C.L.

Neutral aTGC: ZZy and ZZZ

	Mar 2016						
29		AILAS		Channel	Limits	∫ <i>L</i> dt	٧s
	f,			ZZ	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
		⊢−−−− 1		ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
	ZZ(2l2v)			ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ^{.1}	7,8 TeV
Sr.		·		ZZ (comb)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	t ² ⊢			ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
		⊢−−−− 1		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
	ZZ(2 2v)			ZZ (2l2v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		- H		ZZ (comb)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
	f,			ZZ	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
	,	⊢−−−− 1		ZZ	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
\sim	77(2 2v)			ZZ(2l2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		⊢ →		ZZ(comb)	[-2.6e-03, 2.7e-03]	24.7 fb ^{.1}	7,8 TeV
52	f ^z			ZZ	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
	3	HH		ZZ	[-4.0e-03, 4.0e-03]	19.6 fb ^{.1}	8 TeV
	ZZ(2l2v)			ZZ (2l2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
158		H		ZZ (comb)	[-2.2e-03, 2.3e-03]	24.7 fb ⁻¹	7,8 TeV
	-0.02	0	(0.02	0.04 aTGC Lim	iits @95	0.06 5% C.L.

Zyy and ZZy

WWZ

14

Dimension 8 mixed transverse and longitudinal parameters

Mar 2016	CMS			
11141 2010	ATLAS	Channel	Limits	∫ <i>L</i> dt √s
$f_{M,0} / \Lambda^4$	+I	WVγ	[-7.7e+01, 8.1e+01]	19.3 fb ⁻¹ 8 TeV
	⊢−−−	Ζγ	[-7.1e+01, 7.5e+01]	19.7 fb ⁻¹ 8 TeV
	⊢+	Wγ	[-7.7e+01, 7.4e+01]	19.7 fb ⁻¹ 8 TeV
	F-4	SS VVVV	[-3.3e+01, 3.2e+01]	19.4 fb ⁻¹ 8 TeV
	lei lei	γγ→WW	[-1.5e+01, 1.5e+01]	5.1 fb ⁻¹ 7 TeV
	Н	γγ→WW	[-4.6e+00, 4.6e+00]	19.7 fb ⁻¹ 8 TeV
$f_{M,1}/\Lambda^4$	I	WVy	[-1.3e+02, 1.2e+02]	19.3 fb ⁻¹ 8 TeV
	⊢−−−−− 1	Zγ	[-1.9e+02, 1.8e+02]	19.7 fb ⁻¹ 8 TeV
	⊢I	Wγ	[-1.2e+02, 1.3e+02]	19.7 fb ⁻¹ 8 TeV
	F1	ss WW	[-4.4e+01, 4.7e+01]	19.4 fb ⁻¹ 8 TeV
		γγ→WW	[-5.7e+01, 5.7e+01]	5.1 fb ⁻¹ 7 TeV
	le-l	γγ→WW	[-1.7e+01, 1.7e+01]	19.7 fb ⁻¹ 8 TeV
$f_{M,2}/\Lambda^4$	·I	Wyy	[-2.5e+02, 2.5e+02]	20.3 fb ⁻¹ 8 TeV
	н	Zγ	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹ 8 TeV
	н	Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹ 8 TeV
$f_{M,3} / \Lambda^4$	+	Wyy	[-4.7e+02, 4.4e+02]	20.3 fb ⁻¹ 8 TeV
	⊢ −−1	Zγ	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹ 8 TeV
	H	Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹ 8 TeV
$f_{M,4} / \Lambda^4$	⊢	Wγ	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹ 8 TeV
$f_{M,5}/\Lambda^4$	⊢−− I	Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹ 8 TeV
f _{M,6} /Λ ⁴	⊢−− 1	Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹ 8 TeV
	F4	ss ww	[-6.5e+01, 6.3e+01]	19.4 fb ⁻¹ 8 TeV
f _{M,7} /Λ ⁴	⊢	Wγ	[-1.6e+02, 1.6e+02]	19.7 fb ⁻¹ 8 TeV
I I	Harris Harris	ss WW	[-7.0e+01, 6.6e+01]	19.4 fb ⁻¹ 8 TeV
·	-500 0	500	1000	1500
		aQQ	GC Limits @95	% C.L. [TeV ⁻⁴

Dimension 8 transverse parameters

Mar 2016	CMS				
	ATLAS	Channe	el Limits	∫ <i>L</i> dt	√s
$f_{T,0} / \Lambda^4$		Wγγ	[-3.8e+01, 3.8e+01]	19.4 fb ⁻¹	8 TeV
	łI	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	HI	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	H	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢−− I	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	HI	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,1}/\Lambda^4$	······	Wγγ	[-4.6e+01, 4.7e+01]	19.4 fb ⁻¹	8 TeV
	⊢	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H-I	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,2}/\Lambda^4$	⊢ −−−1	Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢I	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	+I	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,5}/\Lambda^4$	н	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$	н	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,7}/\Lambda^4$	⊢+	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8}/\Lambda^4$	Н	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,9}/\Lambda^4$, H	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
				450	
-	-50 0 50	J	100	150	· · · ·

- Processes with multiple bosons in final state have been studied by CMS with Run I data at 7 and 8 TeV
- Production cross sections have been measured in agreement with SM prediction
- Search for anomalous triple and quartic gauge couplings showed no sign of new physics

 More results coming out with Run II data at 13 TeV (See talk from Xavier Coubez later)

Babackup

JHEP 04 (2015) 164

- Event selection: Lepton: p_T > 20 GeV, |η|<2.5(2.4), l=e(μ) Photon: E_T > 15 GeV, |η|<2.5 ΔR(l,γ)>0.7, m_µ > 50 GeV
- Background:

Dominated by DY + non-prompt photons Two template observables (shower shape, isolation) used to measure the yield independently, then combined.

• Systematic:

dominated by template statistics and FSR

contamination

Cross section phase space
$M_{\ell\ell} > 50 \mathrm{GeV}$
$\Delta R(\ell,\gamma) > 0.7$
photon: $ \eta < 2.5$, $I_{\text{gen}} < 5 \text{GeV}$
leptons: $ \eta < 2.5, p_{\rm T} > 20 {\rm GeV}$

inclusive cross section: $\sigma = 2063 \pm 19(\text{stat}) \pm 98(\text{syst}) \pm 54(\text{lumi}) \text{ fb}$ SM: $\sigma_{z_{\gamma}}$ (NNLO) = 2241 ± 22 fb exclusive cross section (Jet veto on pT > 30GeV and $|\eta| < 2.4$): $\sigma = 1770 \pm 18(\text{stat}) \pm 115(\text{syst}) \pm 46(\text{lumi}) \text{ fb}$ SM: $\sigma_{z_{\gamma}}$ (NLO) = 1800 ± 120 fb

Zy(IIy)

