Measurement of the ridge correlations in pp and p+Pb collisions with the ATLAS detector at the LHC

Klaudia Burka on behalf of the ATLAS Collaboration

12.04.2016

Motivation

- Quark Gluon Plasma (QGP) produced and probed in heavy ion collisions
- Signatures of QGP: collective expansion (radial flow, elliptic flow, ...), jet quenching, etc.

P

Study plasma properties:

- particle azimuthal distribution \rightarrow using v_n Fourier coefficients
- two/multi particle correlations

Singles:
$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos[n(\phi - \Phi_n)]$$

Pairs: $\frac{dN}{d\Delta\phi} \propto 1 + \sum_{n} 2v_n^a v_n^b \cos[n(\Delta\phi)]$

 v_2 – elliptic flow

The ridge in Pb+Pb, p+Pb and pp collisions

- □ Two-particle correlations show long-range correlation structure along $\Delta \eta$ at $\Delta \Phi \approx 0 \rightarrow$ the near-side ridge
- What is the origin of ridge structures in small systems? Is it the same mechanism as in Pb+Pb? Is it single-particle azimuthal anisotropy?
- Detailed ridge studies are performed:
 - \square p_T, η , N_{ch}, energy dependence, single-particle v_n

ATLAS detector and datasets

ATLAS pp 2.76 TeV data ATLAS p+Pb 5.02 TeV data $L_{int} = 4 \text{ pb}^{-1}$ $L_{int} = 28 \text{ nb}^{-1}$ p: 4 TeV Pb: 1.57 TeV/N ATLAS pp 13 TeV data $L_{int} = 14 \text{ nb}^{-1}$ Inner Detector (ID) | η | **< 2.5** Both analyses used charged particles measured in **Forward Calorimeter** Inner Detector (ID) with tracking (FCal) coverage $|\eta| < 2.5$ and $p_T > 0.4$ GeV $3.2 < |\eta| < 4.9$

Forward Calorimeter (FCal) is used to define "event activity" of p+Pb collisions

Event activity in **p+Pb** and **pp** collisions

N^{rec}

- **Event activity** in p+Pb collisions is defined in two ways:
 - E_T^{Pb}: Total transverse energy in the FCal on Pb-going side
 - N_{ch}^{rec}: number of charged particles with p_T > 0.4 GeV in ID
 - For pp collisions only N_{ch}^{rec} intervals are used to characterize event activity
 - High multiplicity events in pp:
 - $\begin{array}{l} \textbf{2.76 TeV} \rightarrow \ \textbf{N}_{ch}^{rec} > 50 \\ \textbf{13 TeV} \rightarrow \ \textbf{N}_{ch}^{rec} > 60 \end{array}$

Two-particle correlation (2PC) function

- S is constructed using all pairs of charged particles in the same event
- B obtained from "mixed events", measures distribution of uncorrelated pairs
- Both S and B are corrected for tracking inefficiencies detector acceptance effects largely cancel in the S/B ratio

2PC analysis – p+Pb collisions

2PC analysis – **p+Pb** collisions

12/04/16

2PC analysis – **pp** collisions

12/04/16

□ Y($\Delta \phi$) is used to measure the strength of the long-range component N^a - total number of trigger particles

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi)d\Delta\phi}{N^a \int d\Delta\phi}\right)C(\Delta\phi) - b_{ZYAM}$$

M b_{ZYAM} – pedestal arising from uncorrelated pairs

Compared central and peripheral PTY for $2 < |\Delta \eta| < 5$

Peripheral events show 'away-side' peak
→ dijets contribution

Central events feature the ridge (nearside peak) and excess on away-side

Excess on near-side and away-side independent on event activity, E_T^{Pb}

\Box Y($\Delta \phi$) is used to measure the strength of the long-range component

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi)d\Delta\phi}{N^a \int d\Delta\phi}\right)C(\Delta\phi) - b_{ZYAM}$$

N^a - total number of trigger particles b_{ZYAM} – pedestal arising from uncorrelated pairs

Compared central and peripheral PTY for 2<| $\Delta \eta$ | < 5

Peripheral events show 'away-side' peak
→ dijets contribution

Central events feature the ridge (nearside peak) and excess on away-side

Excess on near-side and away-side independent on event activity, E_T^{Pb}

\Box Y($\Delta \phi$) is used to measure the strength of the long-range component

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi)d\Delta\phi}{N^a \int d\Delta\phi}\right)C(\Delta\phi) - b_{ZYAM}$$

N^a - total number of trigger particles b_{ZYAM} – pedestal arising from uncorrelated pairs

Compared central and peripheral PTY for 2< $| \Delta \eta | < 5$

Peripheral events show 'away-side' peak \rightarrow dijets contribution

Central events feature the ridge (nearside peak) and excess on away-side

Excess on near-side and away-side independent on event activity, E_{T}^{Pb}

$$Y^{sub}(\Delta\phi) = Y(\Delta\phi) - \alpha Y_{peri}^{corr}(\Delta\phi) \propto \left[1 + \sum_{n} 2\psi_{n,n} \cos(n\Delta\phi)\right]$$

п.

$$Y(\Delta\phi) = \left(\frac{\int B(\Delta\phi)d\Delta\phi}{N^a \int d\Delta\phi}\right)C(\Delta\phi) - b_{ZYAM}$$

N^a - total number of trigger particles

ZYAM assumes that number of correlated pairs is zero at minimum

□ The minimum of $Y(\Delta \phi)$ may be modulated due to long-range correlations

Only near-side long range correlation can be extracted

- \rightarrow away-side Y($\Delta \phi$) dominated by dijets
- □ No information about full $\Delta \phi$ dependence → new template fitting method

Template fitting method - **pp**

Single-particle anisotropies v₂ in **pp & p+Pb**

□ If ridge in pp and p+Pb collisions also results from modulation of the single particle ϕ -distribution, measured v_{2.2} should factorize:

$$v_{2,2}(p_T^a, p_T^b) = v_2(p_T^a)v_2(p_T^b) \qquad \qquad v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^a, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^b, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^a) = v_{2,2}(p_T^b, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^b) = v_{2,2}(p_T^b, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^b) = v_{2,2}(p_T^b, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^b) = v_{2,2}(p_T^b, p_T^b) / \sqrt{v_{2,2}(p_T^b, p_T^b)} \\ \sim v_2(p_T^b) = v_$$

v_{2,2} depends on both, a and b, particles but v₂ (p_T^a) should be independent of reference p_T^b

□ Factorization works fine for both, pp & p+Pb, systems → global anisotropy

v_n (p_T) and event activity dependence in **p+Pb**

v_2 integrated over p_T in **pp** and **p+Pb**

- In pp system v₂ shows very weak dependence on energy and track multiplicity
- In p+Pb multiplicity dependence is stronger
 - \rightarrow v₂ grows with N_{ch}^{rec}

N_{ch}^{rec} and p_T dependence of v_2 in **pp** and **p+Pb**

 \Box v₂ in pp system behaves similar as v₂ in Pb+Pb and p+Pb:

- □ Increase with p_T up to ~3 GeV
- Decreases at higher p_T
- v₂ (p_T) shows very weak dependence on energy and track multiplicity (in pp)

Summary

- Ridge was observed in high-multiplicity pp collisions at 2.76 and 13 TeV as well as in p+Pb collisions at 5.02 TeV
- □ ZYAM and template fitting methods were applied to extract long range correlations $v_{2,2}$ modulated by $cos(2\Delta \phi)$ in *p*+*Pb* and *pp* systems respectively
- \Box v_{2.2} exhibits factorization into single particle v₂
- □ Elliptic flow, v₂, was measured for both systems → higher harmonics measured in p+Pb
- □ The shape of v₂(p_T) distribution in pp and p+Pb is similar to the shape of v₂(p_T) distribution in Pb+Pb

→ This suggests that the ridge in pp, p+Pb and Pb+Pb collisions arises from similar dynamics ?

Backup slides

High Multiplicity Triggers in **pp** collisions

- Dedicated triggers (HMT) implemented using ATLAS L1 & HLT systems to increase high multiplicity events
- The structures in the distributions result from the different HMT trigger thresholds

□ High multiplicity events: 2.76 TeV \rightarrow N_{ch}^{rec} > 30 13 TeV \rightarrow N_{ch}^{rec} > 60

High multiplicity triggers in **p+Pb**

- Six pairs of HMT thresholds
- Enhancement from individual HMT (top)
 - Reweighted by MB +HMT distribution (bottom)
 - Reweighting procedure comprise probability for a given event to be accepted by MB or HMT, prescale and trigger effiviency

Event activity in **p+Pb** collisions

Event activity in p+Pb collisions is defined in two ways:

 \Box N_{ch}^{rec}: number of charged particles with p_T > 0.4 GeV in ID

E_{T^{Pb}: Total transverse energy on the FCal on Pb-going side}

 \Box E_T^{Pb} distribution is divided into 12 intervals

For pp collisions only N_{ch}^{rec} intervals are used to characterize event activity

• Jet & dijets peaks are estimated from the peripheral collisions and subtracted from Y($\Delta \phi$)

v_n(p_T) scaling between the **p+Pb** and **Pb+Pb**

Compare $v_n(p_T)_{p+Pb}$ with $v_n(p_T/1.25)_{Pb+Pb}$ (Teaney et al. arXiv: 1312.6770[nucl-th])

- The shape after scaling is similar in both systems
- v₂ values differ only by a scale factor between the two systems
- This suggest similar origins of long range correlations

2PC funcition and $Y(\Delta \phi)$ in p+Pb

