SEARCH FOR RPV AND LONG-LIVED SUSY PARTICLES

Brad Axen, UC Berkeley and LBNL, on behalf of the <u>ATLAS Collaboration</u>

Diverse searches for unique SUSY final states when standard assumptions are broken:

- R-Parity Conservation
 - search without missing energy (E^{MISS}) for R-Parity Violating (RPV) models
- Prompt Decays
 - search for long-lived particles
 - unique signatures target specific lifetime ranges
 - combined, searches cover everything from prompt to stable particles

No E_{τ}^{MISS} to discriminate from QCD background

 \overline{b}

 \overline{s}

S

b

 \triangleright

Strategy

RPV STOP

p

p

For low m_{stop} (100-300 GeV), each squark has a significant boost

 $\lambda_{323}^{\prime\prime*}$

 λ_{323}''

Jets of the two products merge, with characteristic jet substructure variables

Results - Run 1

Top squarks excluded between \triangleright 100 and 300 GeV

LONG-LIVED PARTICLES

DISPLACED VERTICES

6

DISAPPEARING TRACKS

 $\tan\beta = 5, \mu > 0$

Charged particles decay to undetected products within the inner detector

Strategy

Require that a track does not \triangleright extend fully to the TRT, calorimeter, or muon system

Results - Run 1

STOPPED R-HADRONS

R-Hadrons with very long lifetimes may come to rest in the calorimeters and decay after a delay

Activity occurs when beams aren't colliding

Strategy

- Look for calorimeter activity during empty bunch crossings
- Check for extra, energetic jets from R-Hadron decays

Results - Run 1

RUN-2 RESULTS

The dE/dx based metastable, heavy, charged particle search at 13 TeV

PIXEL DE/DX: TECHNIQUE

11

- Search for Heavy (TeV Scale), Long Lived (≥ 1 ns), Charged Particles \triangleright
 - In events triggered with missing energy
 - Containing one high momentum, highly ionizing track

ATLAS Preliminary

Rejecting standard model particles: electrons, jets, muons⁺

- Use dE/dx and momentum to estimate mass according to Bethe-**Bloch function**
 - Calibrated using low momentum hadrons in data

$$(\mathrm{d}E/\mathrm{d}x)_{\mathrm{MPV}}(\beta\gamma) = \frac{p_1}{\beta^{p_3}} \ln(1 + [p_2\beta\gamma]^{p_5}) - p_4$$

SUSY-2016-03

PIXEL DE/DX: RUN 2 IMPROVEMENTS

- Reject collimated tracks with new cluster-based isolation
- Reject standard model background with particle identification

SUSY-2016-03

- Large cross section increase with √s at 13 TeV
- Newly inserted IBL improves truncated dE/dx measurement
- 50% reduction in tails

PIXEL DE/DX: BACKGROUND

<u>SUSY-2016-03</u>

13

Mass [GeV]

SUSY-2016-03

14

Mass [GeV]

PIXEL DE/DX: RESULTS

- No significant excess seen in 2015 data
 - R-Hadrons excluded
 - 1580 GeV between 10-30ns and 1570 GeV for long lifetimes
 - Significant improvement by 400 GeV over the Run 1 limit

15

LONG-LIVED

SUSY-SUMMARY

We've seen several searches which cover unique final states

- SUSY search without MET for RPV models
- SUSY searches for Long-lived particles
 - Unique detector signatures cover subset of final states
 - Cover all lifetimes from prompt decays to stable particles
- Starting to probe RPV and long-lived states at the TeV scale

Early Run 2 result: significant improvements from increase in energy and analysis refinement

- Pixel dE/dx search improves limit from 1200 to 1600 GeV
- Looking forward to Run-2 results this summer!