Searches for diboson resonances with the ATLAS detector at the LHC

Daniel Büscher on behalf of the ATLAS Collaboration

Universität Freiburg

April 12, 2016

Daniel Büscher (Uni Freiburg)

Introduction

Diboson searches in this talk:

- $VV \rightarrow qqqq$ [1] (V: W or Z boson)
- VV → ννqq [2], ℓνqq [3], ℓℓqq [4]
- $VH \rightarrow \nu\nu bb$, $\ell\nu bb$, $\ell\ell bb$ [5]
- $\gamma\gamma$ [6] and $Z\gamma$ [7]

Based on $\sqrt{s} = 13 \, {\rm TeV}$, $3.2 \, {\rm fb}^{-1}$ data

Benchmark models:

- Spin 0: extended Higgs-sector
- Spin 1: Heavy Vector Triplets (HVT)
 → W', Z'
- Spin 2: Randall-Sundrum Graviton (RSG)

Search strategy:

- Reconstruct decay products of resonance X
- Expect peak in m_X spectrum
- Continuous background from SM processes

Run 1 results in diboson searches

Run 1 excess in W' searches

ATLAS sees 2.5 σ excess @ m_{V'} ≃ 2.0 TeV for fully hadronic W' → WZ [8] (significance decreases in combination with other channels [9])

• CMS sees 1.9 σ excess @ $m_{V'} \simeq 1.8 \,\text{TeV}$ for $W' \rightarrow WH \rightarrow \ell \nu bb$ [10]

Run 1 $V' \rightarrow VH$ analysis in ATLAS [11]

- No excess observed, expected limits degrading above $m_{V'} = 1.3 \,\text{TeV}$
- Less sensitivity for higher masses due to a "resolved" jet analyses

For Run 2: Use "boosted" jet selection, reconstruct both b-quarks within one jet

Daniel Büscher (Uni Freiburg)

VV ightarrow qqqq: selection

- All hadronic final state \Rightarrow dominant bkg is QCD multi-jet
- 2 large (R=1.0) anti-kt jets (groomed), $p_T^{J1(2)} > 450(200) \text{ GeV}$
- V → qq tagger @ 50% efficiency based on D₂, m_J: QCD rej. factor 40 to 70 per jet
- N_{track} cut: 70% QCD rejection, 30% signal loss
- $|y_1 y_2| < 1.2$, p_T asymmetry < 0.15
- 3 overlapping signal regions WZ, WW, ZZ (based on $m_{J1,2}$)

$VV \rightarrow qqqq$: results

- Fit m_{JJ} in data with power-law function $\frac{dn}{dx} = p_1(1-x)^{p_2+\xi p_3} x^{p_3} \quad x = \frac{m_{JJ}}{12 \text{ TeV}}$
- Tested on dijet MC and data control regions
- ۰ No significant deviations found

ATLAS Preliminary

1200 1400 1600

1800 2000

s = 13 TeV. 3.2 fb⁻¹

- Limits set on HVT and RSG
- 95% CL exclusion (HVT model A, $g_V = 1$): $1.38 < m_{W'} < 1.6 \, {
 m TeV}$

Data 2015

WZ selection

Fit bkg estimation

Fit exp. stats error

10 Events/100 GeV

10²

10

Ш -2 1000

2200 2400 m, [GeV]

$VV \rightarrow \nu \nu qq$, $\ell \nu qq$, $\ell \ell qq$: selection

• Events selected with $p_{\rm T}^J > 200 \,{\rm GeV}$

Boson tag (m_J, D₂) @ 50% efficiency

Bkgs: multijet, V+jets, $t\bar{t}$

0 leptons

- $E_{\rm T}^{miss} > 250 \, {\rm GeV}$
- $E_{\rm T}^{miss}$, $p_{\rm T}^{miss}$, jets angular cuts
- b-jet veto

Bkgs: W+jets, multijet, $t\bar{t}$

1 lepton

• $E_{\rm T}^{miss} > 100 \, {\rm GeV}$

•
$$p_{\rm T}^{W,J} > 0.4 m_{lvJ}$$

b-jet veto

Bkgs: Z+jets

• 2 leptons • $p_{T}^{Z,J} > 0.4 m_{IIJ}$

Daniel Büscher (Uni Freiburg)

$VV \rightarrow \nu \nu qq$, $\ell \nu qq$, $\ell \ell qq$: control regions

Backgrounds estimated from MC and checked in control regions (CRs):

- Jet mass sidebands for W/Z+jets
- Additional b-tags for ttbar
- CRs included in the final fit ⇒ constrain normalization

Search for diboson resonances

April 12, 2016 7 / 17

$VV \rightarrow \nu \nu qq$, $\ell \nu qq$, $\ell \ell qq$: results

• No significant deviation over the SM backgrounds in m_{VV} spectra

• Limits are set, interpretations: HVT, RSG, Heavy Higgs

Daniel Büscher (Uni Freiburg)

Search for diboson resonances

 $VV \rightarrow \nu \nu qq$, $\ell \nu qq$, $\ell \ell qq$, qqqq: summary

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/

$VH(\rightarrow bb)$: selection

- Search in $\nu\nu$, $\ell\nu$, $\ell\ell$ channels
- Large jet with $p_T^J > 250$ GeV, $m_J \simeq m_H$
- 1 or 2 b-tags (track-jet assoc. to lead. jet)
- 1ℓ and 2ℓ selected with isol. leptons, 0ℓ with E^{miss}_T > 200 GeV
- Main bkgs.: Z+jets (0l, 2l) and W+jets, ttbar (1l)
- Fit to m_{VH} in signal and control regions (m_J sidebands and N^{add}_{btag} ≥1)

Search for diboson resonances

$VH(\rightarrow bb)$: results

• No significant deviation over the SM backgrounds in m_{VH} spectrum

Limits are set, interpretation: HVT

$\gamma\gamma$: Selection

Pre-selection

- Two photons with tight identification and isolation criteria
- Precision region of EM calorimeter: $|\eta| < 2.37$ (1.37-1.52 excluded)

Spin-0 analysis

Optimized for Higgs-like signal

- $E_{\mathrm{T}}^{\gamma 1} > 0.4 m_{\gamma \gamma}$, $E_{\mathrm{T}}^{\gamma 2} > 0.3 m_{\gamma \gamma}$
- \Rightarrow +20% significance for $m_X > 600 \,\text{GeV}$, effectively deplete forward regions

As model-independent as possible

• Limit on fiducial cross section

Search range

• $m_X = [200 \, GeV - 2 \, TeV]$

• $\Gamma_X/m_X = [0\% - 10\%]$

Spin-2 analysis

Loose selection

- $E_{\rm T}^{\gamma 1,2} > 55 \,{\rm GeV}$
- \Rightarrow Preserve acceptance at high mass
- Use RS graviton as benchmark

Search range

- $m_X = [500 \, GeV 3 \, TeV]$
- $k/M_{Pl} = [0.01 0.3]$
- $\Gamma_X/m_X \simeq 1.44 (k/\overline{M}_{Pl})^2 \simeq [0\% 10\%]$

$\gamma\gamma :$ Background fit

Spin-0 analysis

Functional background form

- Family of nested functions (power law × log polynomials)
- Needed d.o.f. determined from F-test

Spin-2 analysis Irreducible bkg $(\gamma\gamma)$ from MC

• SHERPA $\gamma\gamma$ including detector sim, reweighted to DIPHOX NLO $m_{\gamma\gamma}$

Reducible ($\sim 10~\%~\gamma j$, < 1~%~jj) from data

Daniel Büscher (Uni Freiburg)

$\gamma\gamma$: Results

m_{G*} [GeV]

600

$\gamma\gamma$: Re-analysis of 8 TeV data

Spin-0 analysis

• 1.9 σ at $m_X = 750 \text{ GeV}$, $\theta_X/m_X = 6 \%$ Compatibility with 13 TeV spin-0 analysis

- gg (scaling: 4.7) ightarrow 1.2 σ
- qq (scaling: 2.7) \rightarrow 2.1 σ

Spin-2 analysis

No significant excess

Compatibility with 13 TeV spin-2 analysis

- ${\rm O}~{\rm gg} \rightarrow 2.7\,\sigma$
- qq ightarrow 3.3 σ

Daniel Büscher (Uni Freiburg)

$Z\gamma$ analysis

- $Z\gamma$ resocance search: interesting in regard of possible $\gamma\gamma$ signal
- $Z(\rightarrow \ell \ell)\gamma$ analysis: search range $m_X = 0.25$ to 1.5 TeV $E_T^{\gamma} > 0.3m_X$, $p_T^{\ell} > 10$ GeV, $m_{\ell\ell} - m_Z < 15$ GeV
- $Z(\rightarrow qq)\gamma$ analysis: search range $m_X = 0.72$ to 2.75 TeV $E_T^{\gamma} > 250$ GeV, $p_T^{J} > 200$ GeV, $80 < m_J < 110$ GeV
- Analytic background model similar to $\gamma\gamma$
- No excess observed, limits are set (heavy Higgs)

Searches for diboson resonances performed with $\sqrt{s} = 13 \, {\rm TeV}$, $3.2 \, {\rm fb}^{-1}$ data

- Most searches do not see significant excesses, limits are set
 → Exceeding Run 1 sensitivity for high masses
- Largest excess observed in $\gamma\gamma$ resonance search around $m_X = 750 \text{ GeV}$ \rightarrow Global significance 2.0 σ (1.8 σ) for the spin-0 (spin-2) analysis
- 8 TeV $\gamma\gamma$ data re-analyzed, compatibility with 13 TeV results assessed \rightarrow gg: 1.2 σ (2.7 σ), qq: 2.1 σ (3.3 σ) for the spin-0 (spin-2) analysis Looking forward to 2016 LHC run for more data!

BACKUP

References I

- Search for resonances with boson-tagged jets in 3.2 fb1 of p p collisions at s = 13 TeV collected with the ATLAS detector, Tech. Rep. ATLAS-CONF-2015-073, CERN, Geneva, Dec, 2015. https://cds.cern.ch/record/2114845.
- [2] Search for diboson resonances in the ννqq final state in pp collisions at √s =13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2015-068, CERN, Geneva, Dec, 2015. https://cds.cern.ch/record/2114840.
- [3] Search for WW/WZ resonance production in the lνqq final state at √s = 13 TeV with the ATLAS detector at the LHC, Tech. Rep. ATLAS-CONF-2015-075, CERN, Geneva, Dec, 2015. https://cds.cern.ch/record/2114847.
- [4] Search for diboson resonances in the llqq final state in pp collisions at √s = 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2015-071, CERN, Geneva, Dec, 2015. https://cds.cern.ch/record/2114843.
- [5] Search for new resonances decaying to a W or Z boson and a Higgs boson in the $\ell\ell b\bar{b}$, $\ell\nu b\bar{b}$, and $\nu\nu b\bar{b}$ channels in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2015-074, CERN, Geneva, Dec, 2015. https://cds.cern.ch/record/2114846.

References II

- [6] Search for resonances in diphoton events with the ATLAS detector at √s = 13 TeV, Tech. Rep. ATLAS-CONF-2016-018, CERN, Geneva, Mar, 2016. https://cds.cern.ch/record/2141568.
- [7] Search for heavy resonances decaying to a Z boson and a photon in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2016-010, CERN, Geneva, Mar, 2016. https://cds.cern.ch/record/2139795.
- [8] Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \sqrt{s=8} TeV with the ATLAS detector, Journal of High Energy Physics 12 (2015) 55, arXiv:1506.00962 [hep-ex].
- [9] Combination of searches for WW, WZ, and ZZ resonances in pp collisions at √s = 8 TeV with the ATLAS detector, Physics Letters B 755 (2016) 285-305, arXiv:1512.05099 [hep-ex].
- [10] CMS Collaboration, Search for massive WH resonances decaying into the l nu b anti-b final state at $\sqrt{(s)} = 8$ TeV, ArXiv e-prints (2016), arXiv:1601.06431 [hep-ex].
- [11] Search for a new resonance decaying to a W or Z boson and a Higgs boson in the final states with the ATLAS detector, European Physical Journal C 75 (2015) 263, arXiv:1503.08089 [hep-ex].

$\gamma\gamma$: Photon energy calibration

MV regression to calibrate photon cluster energy (EPJ C74 (2014) 3071)

- EMC longitudinal layers intercalibration from from 2012 data
- + additional uncertainty (mostly affecting constant term)
- Energy scale and resolution corrections checked with 13 TeV Z → ee events

At $E_{\rm T}^{\gamma}>$ 100-200 GeV, resolution dominated by constant term c = 0.6 % - 1.5 %

•
$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

Uncertainties

- Energy scale: ±(0.4 % 2 %)
- Energy resolution (*E*^γ_T = 300 GeV): ±(80 % - 100 %)

$\gamma\gamma$: Signal modeling

Spin-0 analysis

Heavy Higgs-like model

- Narrow to large width
 (Γ_X = 4 MeV to 10 % m_X)
- Powheg line-shape assuming SM couplings convoluted to detector response (ggF)

Double-Sided Crystal Ball (DSCB)

Spin-2 analysis

RS-graviton-like model

- k/M_{Pl} = 0.01 (γ_G/m_G = 0.01%) to measure and parameterize detector response (DSCB)
- Analytical convolution of theoretical line-shape with detector response

 $\gamma\gamma$ plots: N_{jet}

 $\gamma\gamma$ plots: $p_T^{\gamma\gamma}$

 $\gamma\gamma$ plots: E_T^{miss}

 $\gamma\gamma$ plots: $\cos\theta_{\gamma\gamma}^*$

