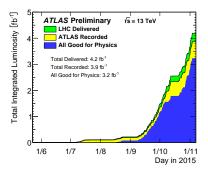
Searches for new physics in high-mass fermionic final states and jets with the ATLAS detector at the LHC

Oleksandr Viazlo on behalf of the ATLAS collaboration

Lund University

13 April 2016


LUND UNIVERSITY

Introduction

Resonant and non-resonant searches for new physics

Covered analysis

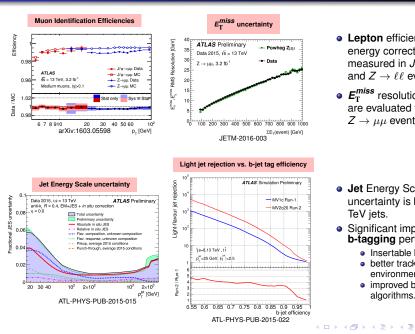
- 13 TeV data only.
 - 3.0 3.6 *fb*⁻¹ of luminosity.
- High-mass final states only.

• 8 analysis in total \rightarrow no many details on the slides \rightarrow follow references to find out more!

Fermionic final states

- lepton + E_{T}^{miss} [W']
- di-lepton ℓ[±]ℓ[∓] [Z', Contact Interaction (CI)]
- di-lepton e[±] µ[∓] [Z', Quantum Black Holes (QBH)]

Hadronic final states (jets)

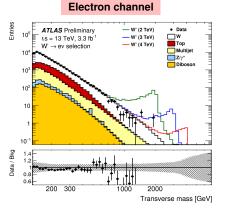

- **di-jet** [QBH, *q*^{*}, *W*[′], Cl]
- di-jet with b-tagging $[b^*, Z']$
- multijet [QBH, string balls]

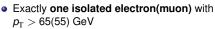
Mixed final states

- lepton and 2 jets/leptons [QBH]
- 2 leptons and 2+ jets [leptoquarks]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Physics objects performance at 13 TeV

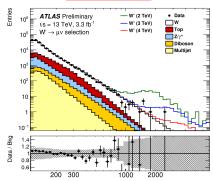

- Lepton efficiencies and energy corrections are measured in $J/\psi \rightarrow \ell \ell$ and $Z \rightarrow \ell \ell$ events.
- E_T^{miss} resolution and scale are evaluated from $Z \rightarrow \mu\mu$ events.


- Jet Energy Scale uncertainty is below 3% for TeV jets.
- Significant improvement of b-tagging performance:
 - Insertable B-Laver (IBL).
 - better tracking in dense environment
 - improved b-tagging algorithms.

Fermionic final states $\downarrow \downarrow \downarrow \Rightarrow \text{ *lepton + } E_{T}^{miss}$ $\Rightarrow \# \text{di-lepton } \ell^{\pm} \ell^{\mp}$ $\Rightarrow \# \text{di-lepton } e^{\pm} \mu^{\mp}$

∃ > < ∃</p>

lepton + $E_{\rm T}^{miss}$

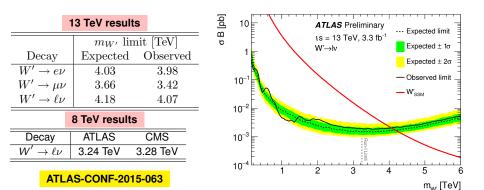


- $\bullet ~\textit{\textbf{E}}_{T}^{\textit{miss}} > 65(55)~\text{GeV}$
- Search variable:

$$m_{
m T}=\sqrt{2 {m
ho}_{
m T} {m E}_{
m T}^{miss}}(1-\cos arphi_{\ell\,
u})$$

ATLAS-CONF-2015-063

Muon channel

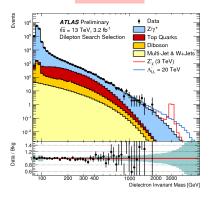

Transverse mass [GeV]

- Dominant background processes:
 - W, Z from Monte Carlo simulation (mass dependent NNLO pQCD and NLO EW corrections)
 - top from Monte Carlo simulation (accurate to NNLO in pQCD)
 - multijet data-driven matrix method

< ロ > < 同 > < 回 > < 回 >

 No significant deviation from SM is observed.

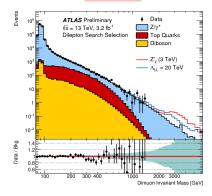
Searches with high-mass fermionic final states and jets



- Benchmark model: W' Sequential Standard Model (SSM)
 - · Heavier copy of the SM W, same couplings
 - Branching ratio to WZ set to 0, no interference to W
- Almost 1 TeV improvement on limits

• • • • • • • • • • • • •

di-lepton $\ell^{\pm}\ell^{\mp}$

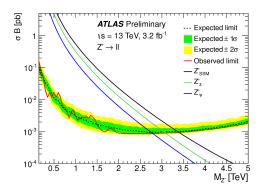

Di-muon

Di-electron

- At least **2** isolated leptons with $p_{\rm T} > 30~{\rm GeV}$
- Search variable: di-lepton invariant mass

ATLAS-CONF-2015-070

- Dominant background processes:
 - Drell-Yan Z/γ from Monte Carlo simulation (mass dependent NNLO pQCD and NLO EW corrections)
- Sums of backgrounds are rescaled to match data in the normalisation region 80 GeV < m_{ℓℓ} < 120 GeV.


・ロト ・回ト ・ヨト ・ヨト

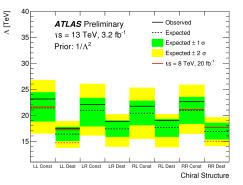
No significant excess observed.

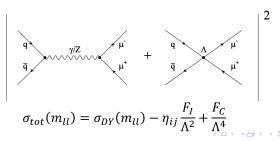
di-lepton $\ell^{\pm}\ell^{\mp}$

Resonant Z' models

- Benchmark SSM (same as for the W'):
 - Z' has the same couplings as SM Z
- *E*₆ Grand Unified Theory:
 - $E_6 \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
 - $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$
 - 6 commonly motivated states of Z' namely: Z'_ψ, Z'_N, Z'_η, Z'₁, Z'_S, Z'_χ
- 400-500 GeV improvements on limits over Run 1 results

Model	Width [%]	ee [TeV]		$\mu\mu$ [TeV]		$\ell\ell$ [TeV]	
		Exp	Obs	Exp	Obs	Exp	Obs
$Z'_{\rm SSM}$	3.0	3.17	3.18	2.91	2.98	3.37	3.40
Z'_{χ}	1.2	2.87	2.88	2.64	2.71	3.05	3.08
Z'_{χ} Z'_{S}	1.2	2.83	2.84	2.59	2.67	3.00	3.03
Z'_I	1.1	2.78	2.78	2.53	2.62	2.95	2.98
$Z'_{\rm N}$	0.6	2.64	2.64	2.38	2.48	2.81	2.85
Z'_n	0.6	2.64	2.65	2.38	2.48	2.81	2.85
Z'_{ψ}	0.5	2.58	2.58	2.32	2.42	2.74	2.79


ATLAS-CONF-2015-070


Oleksandr Viazlo on behalf of the ATLAS collaboration

Non-Resonant Contact Interaction (CI)

- Quark and Lepton Compositeness:
 - Characteristic energy scale A corresponds to binding energy between constituents
 - η_{ij} gives chiral structure of the interaction
- Excpect non-resonant deviations in the di-lepton mass spectrum.

ATLAS-CONF-2015-070

di-lepton $e^{\pm}\mu^{\mp}$

σ B [pb]

10-1

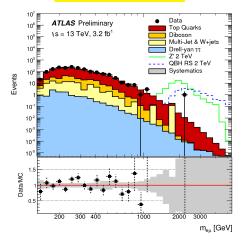
10-2

 10^{-3}

10-4 -

ATLAS Preliminary

 $is = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ Z' $\rightarrow eu$


1.5

- Direct production of e[±]µ[∓] pair is forbidden by lepton flavour conservation in SM.
- Is allowed in many extensions of the SM (Z', Quantum Black Hole (QBH) models).
- Main backgrounds from MC simulations. Multi-Jet - data-driven matrix method.

25 3 35

• 0.5 TeV improvement on Z' limit.

ATLAS-CONF-2015-072

Model	Expected Limit [TeV]	Observed Limit [TeV]			
Z' SSM	3.19	3.01			
QBH ADD n=6	4.62	4.54			
QBH RS n=1	2.56	2.44	く用き	2	500

Oleksandr Viazlo on behalf of the ATLAS collaboration

--- Expected limit

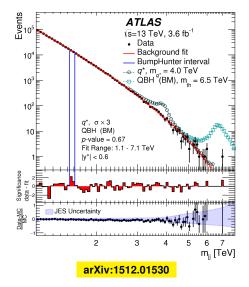
Expected ± 1σ

Expected ± 2σ

4.5 5 M₇ [TeV]

Observed limit

---- Z'ssm

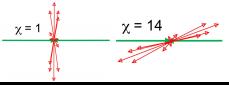

Searches with high-mass fermionic final states and jets

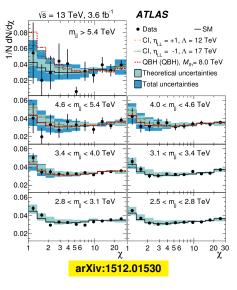
Hadronic final states (jets)

11/24

A D A D A D A

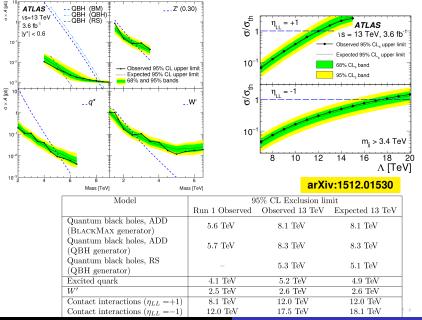
- At least **two jets** with $p_{\rm T}$ > 440 (50) GeV.
- Search variable: mass *m*_{jj} of the two leading jets.
- QCD predicts a smoothly falling dijet mass \rightarrow model it with power law function: $f(z) = p_1(1-z)^{p_2} z^{p_3}$, where $z \equiv m_{jj}/\sqrt{s}$
- Look for localized excesses wrt. background model.
- Di-jet mass resolution: 2-2.5%
- No significant deviation observed.




Di-jet angular analysis

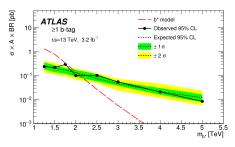
- Complementary to di-jet resonance analysis which does not have sensitivity for wide resonance.
- Search variable: invariant rapidity χ in different m_{ii} ranges.

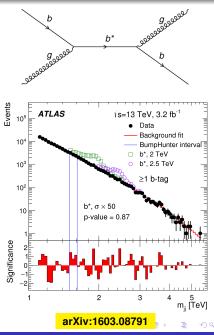
$$y = \ln\left(\frac{E + p_z}{E - p_z}\right) \rightarrow y^* = \frac{y_1 - y_2}{2}$$
$$y = e^{2|y^*|} = e^{|\Delta y|}$$


- Beyond Standard Model (BSM) signal are expected at large angles wrt. the beam \rightarrow at low χ .
- No significant excess observed.
- New mass region explored: m_{jj} > 5.4 TeV was not reachable for 8 TeV analysis.

• • • • • • • • • • • • •

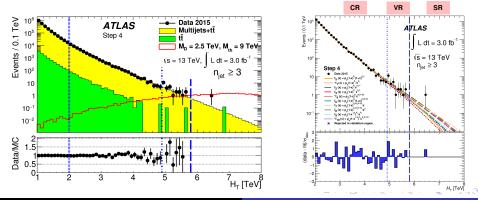
Di-jet

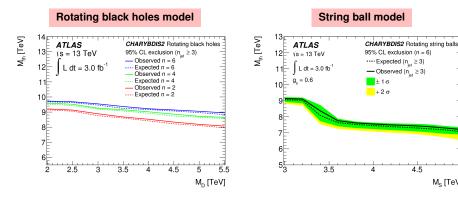



Oleksandr Viazlo on behalf of the ATLAS collaboration

Searches with high-mass fermionic final states and jets

Di-jet with b-tagging


- Similar selection as for di-jet analysis.
- Signal regions:
 - ≥1 b-tagged jets.
 - 2 b-tagged jets.
- Background prediction is compatible with data.
- Excluded mass limits:
 - b*: 1.1-2.1 TeV
 - leptophobic Z': 1.1-1.5 TeV
- No such analysis for 8 TeV period.



Multijet

- At least three jets with $p_{\mathrm{T}} >$ 50 GeV and $|\eta| <$ 2.8
- Search variable: Scalar sum of jet transverse momenta ($H_{\rm T}$) > 1 TeV
- SM background prediction smooth fit by data (10 functions tested):
 - is done in low-H_T Control Region (CR)
 - is cross-checked in medium- $H_{\rm T}$ Validation Region (VR)
 - is used for SM backgound prediction in high-H_T Signal Region (SR)
- No significant excess observed.

arXiv:1512.02586

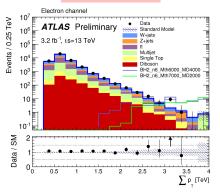
- Limits for rotating black holes with 2,4 and 6 extra dimensions are set as a function:
 - fundamental Planck scale (M_D)
 - mass threshold (M_{th})

 Limits for String balls with 6 extra dimensions are set as a function:

- string scale (M_S)
- mass threshold (M_{th})
- string coupling (q_s)
- Almost 4 TeV improvement of limit in M_{th}.

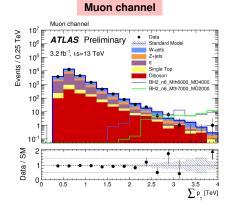
arXiv:1512.02586

17/24


M_s [TeV]

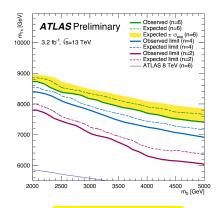
Mixed final states

 $\underbrace{ \begin{array}{c} & & \\ &$

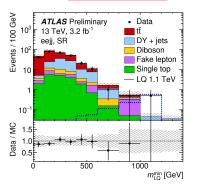

< E

Electron channel

- At least one lepton with $p_{\rm T}$ > 100 GeV.
- Two additional objects (leptons or jets) with p_T > 100 GeV.
- Search variable: $\sum p_T$ of all leptons/jets with $p_T > 60$ GeV ($\sum p_T > 2$ or 3 TeV).

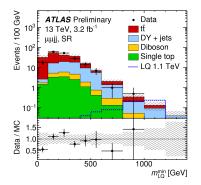

ATLAS-CONF-2016-006

• The *tt*, *W*+jets and *Z*+jets background normalisation are taken from simultaneous fit in background dedicated CRs.


- Validation Region: $1.5 < \sum p_{\rm T} < 2.0$ TeV.
- No significant excess observed.

- Limits for rotating black holes with 2,4 and 6 extra dimensions are set as a function:
 - fundamental Planck scale (M_D)
 - mass threshold (*M*_{th})
- Upper limits on the possible contribution of new physics processes in this class of final states are set at:
 - 12.1 fb for $\sum p_{\rm T} >$ 2 TeV
 - 3.4 fb for $\sum p_T > 3$ TeV
- Limit in *M*_{th} is improved by almost 3 TeV.

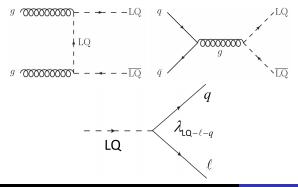
ATLAS-CONF-2016-006

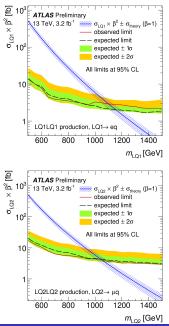

Lepton-jet resonances (2 leptons and 2+ jets)

Electron channel

- Inclusive search for a new physics signature of lepton-jet resonances.
- 2 electrons (muons) with $p_T > 30(40)$ GeV and 2+ jets with $p_T > 50$ GeV.
- 2 lepton-jet pairs: invariant mass difference between them has to be the smallest.

Muon channel




- The *t*^{*T*} and DY+jets background normalisation are taken from simultaneous fit in background CRs.
- Search variable:
 - m_{LO}^{min} minimum invariant mass of 2 lepton-jet pairs $(\sum p_{T} > 600 \text{ GeV}; m_{\ell \ell} > 130 \text{ GeV}).$

□ ▶ < □ ▶ < □ ▶ < □</p>

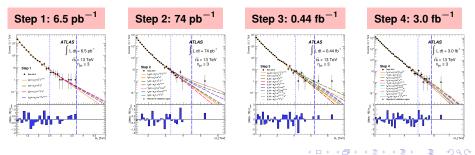
Lepton-jet resonances (2 leptons and 2+ jets)

- Tested model: pair production of first- and second-generation scalar leptoquarks (mBRW model).
- Excluded LQs mass ranges (BR=1):
 - $m_{LQ1} < 1100 \text{ GeV}; m_{LQ2} < 1050 \text{ GeV}$
- Observed limit is stronger by 50 GeV comparing with ATLAS Run 1 result.
- Limits with different values of BR were set as well.

Summary of exclusion limits

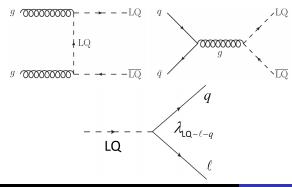
	Model	Limit 8 / 13 TeV	Limit improvement	t
Contact Interaction	🗙 CI qqqq	Λ: 12.0 / 17.5 TeV	5.5 TeV	
	X CI qqℓℓ	Λ: 21.6 / 23.1 TeV	1.5 TeV	
Extra dimentions	 ★ ADD QBH ★ ADD BH high $\sum p_T$ ★ ADD BH multijet 	M _{th} : 5.82 / 8.30 TeV M _{th} : 5.80 / 8.20 TeV M _{th} : 5.80 / 9.55 TeV	2.48 TeV 2.40 TeV 3.75 TeV	
Excited fermions	$\begin{array}{c} \# \hspace{0.1cm} q^* ightarrow qg \\ \# \hspace{0.1cm} b^* ightarrow bg \end{array}$	m _{q*} : 4.09 / 5.20 TeV m _{b*} : - / 2.10 TeV	1.11 TeV - TeV	
Gauge bosons	* SSM $Z' \rightarrow \ell \ell$ * SSM $Z' \rightarrow e^{\pm} \mu^{\mp}$ * SSM $W' \rightarrow \ell \nu$ * Leptophobic $Z' \rightarrow bb$	M _{Z'} : 2.90 / 3.40 TeV M _{Z'} : 2.50 / 3.01 TeV M _{W'} : 3.24 / 4.07 TeV M _{W'} : - / 1.5 TeV	0.50 TeV 0.51 TeV 0.83 TeV - TeV	
Leptoquarks	• Scalar LQ 1 st gen • Scalar LQ 2 nd gen	m_{LQ} : 1.05 / 1.10 TeV m_{LQ} : 1.00 / 1.05 TeV	0.00 101	२. (~ 23/ 24

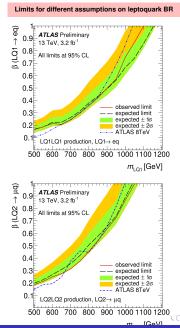
- ✓ Current results on searches for new physics in high-mass fermionic final states and jets have been presented.
- ✓ The sensitivity of all searches already exceeds Run 1 results and new mass regions have been explored.
- No significant excesses are observed but stronger exclusion limits are set for various models beyond the Standard Model.
- The expected ten times higher luminosity in 2016 will allow a deeper exploration of the 13 TeV regime.


BACKUP

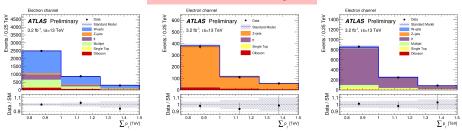
2

イロン イロン イヨン イヨン


Multijet


- At least three jets with $p_{\mathrm{T}} >$ 50 GeV and $|\eta| <$ 2.8
- Search variable: Scalar sum of jet transverse momenta (H_T) > 1 TeV
- SM background predicted by data-driven fit-based technique based on 3 regions:
 - Control region (CR) fit background model to data (10 functions tested)
 - Validation region (VR) cross-check that the extrapolation procedure is working properly
 - Signal region (SR) use fit to estimate amount of the SM background
- In order to be sure that CR and VR are not contaminated by possible signal use bootstrap approach:
 - examine data sets whose size increases by approximately a factor of ten at each step, starting with a sample whose sensitivity is slightly beyond the Run 1 limit.
 - if a search in one step sees no new physics, the possible contributions of signal to the control and validation regions of the next step are small.

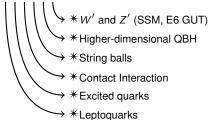
Lepton-jet resonances


- Tested model: pair production of first- and second-generation scalar leptoquarks (mBRW model).
- Excluded LQs mass ranges (BR=1):
 - *m*_{LQ1} < 1100 GeV
 - *m*_{LQ2} < 1050 GeV
- Observed limit is stronger by 50 GeV comparing with ATLAS Run 1 result.

Motivation of analysis selection wrt QBH models

- Gravitational interaction couples to the energy-momentum tensor rather than gauge quantum numbers, final states are expected to be populated "democratically".
- It is expected that a significant fraction of final states will contain leptons.
- Lepton + 2 Jets/Leptons selection enhance the signal strength compared to the dominant background at the LHC which arises from quark and gluon scattering processes forming hadronic final states.

Normalization Control Regions


• The backgrounds predictions were adjusted by the likelihood fit.

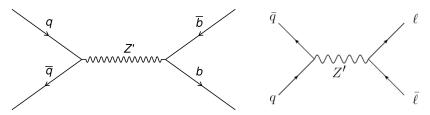
• Scale factors:

- W+jets: 0.81 ± 0.07
- Z+jets: 1.01 ± 0.08
- $t\bar{t}$: 0.95 ± 0.08

< ロ > < 同 > < 回 > < 回 >

Theoretical BSM models

30/24

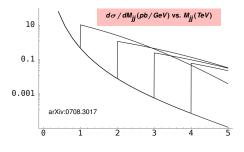

A = A = A

Sequential Standard Model (SSM)

- W' and Z' have the same couplings to fermions as the Standard Model (SM) W and Z bosons.
- E₆ Grand Unified Theory
 - $E_6 \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
 - $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$
 - 6 commonly motivated states of Z' namely: $Z'_{\psi}, Z'_{N}, Z'_{\eta}, Z'_{I}, Z'_{S}, Z'_{\chi}$

• Leptophobic Z'

- Z' boson does not couple to the leptons.
- Derived from different scenarios of the E6 GUT.

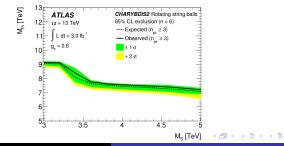


31/24

- ADD model proposed by Arkani-Hamed, Dimopoulos and Dvali.
- RS model proposed by Randall and Sundrum.
- fundamental Planck scale (M_D) energy scale at which quantum effects of gravity become strong.
- mass threshold (*M*_{th}) threshold where black holes start to form.
- Ideally, black holes would decay isotropically to many energetic particles, in keeping with the prediction of thermal Hawking radiation.
- Expected black hole signature is low multiplicity final states (ADD n = 6):

$$\langle N \rangle \sim \left(\frac{M_{BH}}{M_D} \right)^{8/7}$$
 (1)

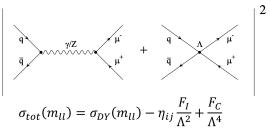
QBH signal on top of SM QCD backgound


String balls

In string theory, black holes have a minimum mass below which they transition into highly excited long and jagged strings — "string balls".

In summary, the elementary (parton) cross section for string ball/BH production is

$$\sigma \sim \begin{cases} \frac{g_s^2 M_{SB}^2}{M_s^4} & M_s \ll M_{SB} \le M_s / g_s , \\ \frac{1}{M_s^2} & M_s / g_s < M_{SB} \le M_s / g_s^2 , \\ \frac{1}{M_P^2} \left(\frac{M_{BH}}{M_P} \right)^{\frac{2}{n+1}} & M_s / g_s^2 < M_{BH} . \end{cases}$$
(2)


 M_{SB} (M_{BH}) is the mass of the string ball (black hole), and we have used $\alpha' = M_s^{-2}$. The first two mass ranges lead to string balls, the third to black holes.

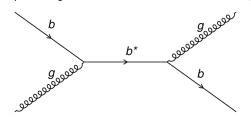
Contact Interaction

Non-Resonant Contact Interaction (CI)

- Quark and Lepton Compositeness:
 - Characteristic energy scale Λ corresponds to binding energy between constituents
 - η_{ij} gives chiral structure of the interaction
- Excpect non-resonant deviations in the di-lepton mass spectrum.

CI Lagrangian is used to describe a new interaction or compositeness in the process $q\overline{q} \to \ell^+\ell^-$:

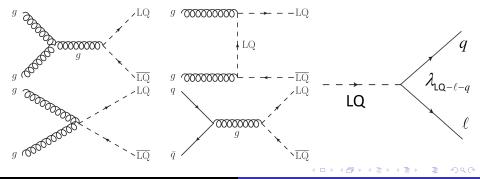
$$\mathcal{L} = \frac{g^2}{\Lambda^2} \left[\eta_{LL} \left(\overline{q}_L \gamma_\mu q_L \right) \left(\overline{\ell}_L \gamma^\mu \ell_L \right) + \eta_{RR} \left(\overline{q}_R \gamma_\mu q_R \right) \left(\overline{\ell}_R \gamma^\mu \ell_R \right) \right.$$


$$\left. + \eta_{LR} \left(\overline{q}_L \gamma_\mu q_L \right) \left(\overline{\ell}_R \gamma^\mu \ell_R \right) + \eta_{RL} \left(\overline{q}_R \gamma_\mu q_R \right) \left(\overline{\ell}_L \gamma^\mu \ell_L \right) \right]$$

$$(3)$$

34/24

< 回 > < 三 > < 三 >


Excited quarks are a consequence of quark compositeness models that were
proposed to explain the generational structure and mass hierarchy of quarks.

35/24

< 回 > < 三 > < 三 >

- LQs possess non-zero baryon and lepton numbers; their existence would provide a connection between quarks and leptons.
- LQs carry a colour-triplet charge and a fractional electric charge.
- The signal benchmark model in the analysis is the minimal Buchmüller–Rückl–Wyler model (mBRW).
 - Lepton number and baryon number are separately conserved to prevent fast proton decay.
 - The LQ couplings are also considered to be purely chiral.
 - LQs belong to three generations (first, second and third) which interact only with lepton–quark pairs within the same generation.
 - Lepton-flavour violation is suppressed.

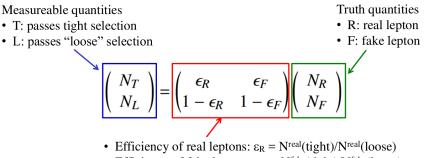
Other materials *Summary plot of Exotics searches. *QCD background estimation

🗇 🕨 🖌 🖻 🕨 🖌 🖻

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2016

ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$


 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

	Model	ί,γ	Jets†	E ^{miss} T	∫£ dt[fb	¹] Limit	Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{YK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD OBH} - \ell q \\ \text{ADD OBH} - h \\ \text{ADD OBH houtiget} \\ \text{RSI } G_{KK} \rightarrow \ell\ell \\ \text{RSI } G_{KK} \rightarrow \ell\ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \gamma WW \rightarrow qq\ell \nu \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \ell \\ \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \\ \text{RS } \text{Bulk } \text{RS } G_{KK} \rightarrow \ell \\ \text{Bulk } \text{RS }$	$\begin{array}{c} - & 2 e, \mu \\ 1 e, \mu & - \\ - & 2 e, \mu \\ 2 e, \mu & 2 \gamma \\ 1 e, \mu & - \\ 1 e, \mu & - \\ 1 e, \mu & 1 e, \mu \end{array}$	$\geq 1 j$ - 1 j 2 j $\geq 2 j$ $\geq 3 j$ - - - - - - - - - - - - -		3.2 20.3 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 20.3 3.2 20.3 3.2	Mo 6.85 TeV $a = 2$ Ma 4.7 TeV $a = 34.2$ Ma 5.2 TeV $a = 6$ Segments 2.65 TeV $4/0$ Gene mass 1.06 TeV $4/0$ Gene mass 1.06 TeV $4/0$ Gene mass 4.75 TeV $4/0$ Kmass 1.06 TeV $4/0$ Kmass 1.06 TeV $1/0$ Kmass 1.06 TeV $1/0$	Preliminary 1407.2410 1311.2006 1512.01530 ATLAS-CONF-2016-006 1512.02586 1405.4123 1504.05511 ATLAS-CONF-2016-017 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \mathcal{U} \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{SSM } W' \to \ell \nu \\ \text{HVT } W' \to WZ \to qq \nu \text{ model } A \\ \text{HVT } W' WZ \to qq qq \text{ model } A \\ \text{HVT } W' W H \to \ell \nu b \text{ model } B \\ \text{HVT } Z' \to ZH \to \nu \nu bb \text{ model } B \\ \text{LRSM } W_R' \to tb \end{array}$		- 2 b - 1 J 2 J 1-2 b, 1-0 1-2 b, 1-0 2 b, 0-1 j ≥ 1 b, 1 J	j Yes Yes	3.2 19.5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 20.3 20.3	2'mass 3.4 TeV 2'mass 2.0 YeV 2'mass 1.5 TeV W mass 4.07 TeV W mass 1.6 TeV W mass 1.8 TeV W mass 1.38/t 6 TeV W mass 1.38/t 6 TeV W mass 1.38/t 6 TeV W mass 1.32/t FeV W mass 1.52 TeV W mass 1.52 TeV W mass 1.52 TeV W mass 1.52 TeV	ATLAS-CONF-2015-070 1502.07177 Preliminary ATLAS-CONF-2015-063 ATLAS-CONF-2015-068 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 ATLAS-CONF-2015-074 1410.4103 1408.0886
CI	Cl qqqq Cl qqℓℓ Cl uutt	 2 e, μ 2 e, μ (SS)	2 j ≥ 1 b, 1-4	- j Yes	3.6 3.2 20.3	A 17.5 TeV η _{L1} = -1 A 23.1 TeV η _{L1} = -1 A 4.3 TeV (c _{L1} = 1)	1512.01530 ATLAS-CONF-2015-070 1504.04605
МД	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} \geq 1 \ j \\ 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$	Yes Yes Yes	3.2 3.2 3.2	ma 1.0 TeV g ₄ − 0.25, g ₊ = 1.0. m ₂ () ≥ 140 GeV ma 550 GeV g ₄ − 0.25, g ₊ = 1.0. m ₂ () ≥ 140 GeV M ₄ 550 GeV g ₄ − 0.25, g ₊ = 1.0. m ₂ () ≥ 10 GeV	Preliminary Preliminary ATLAS-CONF-2015-080
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 µ 1 e, µ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- - Yes	3.2 3.2 20.3	L0 mass 1.07 TeV $β = 1$ L0 mass 1.03 TeV $β = 1$ L0 mass 640 GeV $β = 0$	Preliminary Preliminary 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ T_{5/3} \rightarrow Wt \end{array} $	1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ	$\begin{array}{c} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/{\geq}1 \ b \\ \geq 4 \ j \\ \geq 1 \ b, \geq 5 \end{array}$	j Yes j Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass 655 GeV/ Y mass Tin (TD) doublet Y mass 773 GeV/ IB mass Y doublet How You have IB mass How	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1503.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton v^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1j 2j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 3.6 3.2 20.3 20.3 20.3	4/ TeVI cody of and cf. A - m(q') 9/ mass 5.2 TeVI ody of and cf. A - m(q') 16/ mass 2.1 TeVI (q - f_c - f_q - 1) 16/ mass 1.5 TeVI (q - f_c - f_q - 1) 17 mass 3.0 TeVI A - 3.0 TeV 16/ mass 1.6 TeVI A - 1.6 TeV	1512.05910 1512.01530 Preliminary 1510.02664 1411.2921 1411.2921
Other	Higgs triplet H ^{±±} → ℓτ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS) 3 e, μ, τ 1 e, μ - - -		Yes - - Yes - - 3 TeV	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	Jar Diffs 560 GeV m(We) = 2.4 TeV no mixing HM* mass 551 GeV 2.0 TeV DV poduction, RP(H_2^+ - r/r) = 1 HM* mass 400 GeV DV poduction, RP(H_2^+ - r/r) = 1 3months = 1 aglio 11 model particit mass 657 GeV 4months = 1 4months = 1 and changed particit mass 657 GeV 4months = 1 4months = 1 and changed particit mass 75 GeV 4months = 1 4months = 1 and changed particit mass 75 GeV 4months = 1 4months = 1 and changed particit mass 75 GeV 4months = 1 4months = 1	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 1509.08059
*0-1						10 ⁻¹ 1 ¹⁰ Mass scale [TeV]	

Oleksandr Viazlo on behalf of the ATLAS collaboration

Searches with high-mass fermionic final states and jets

- QCD background is evaluated by using data-driven method (matrix method) since MC is not so reliable.
- Matrix method based on different probabilities of real and fake leptons for passing "tight" and "loose" selection.

• Efficiency of fake leptons: $\varepsilon_F = N^{fake}(tight)/N^{fake}(loose)$

Number of fake leptons coming from QCD background can be expressed as:

$$\epsilon_F N_F = rac{\epsilon_F}{\epsilon_R - \epsilon_F} \left(\epsilon_R (N_L + N_T) - N_T \right)$$

Tight selection = Signal selection "Loose" selection:

- Electron: Signal selection wo isolation cut and looser electron ID
- Muon: Signal selection wo isolation cut

Fake Efficiencies are calculated by using jet enriched control region:

- No Z Candidate ($|m_{\parallel} m_Z| > 20 \text{ GeV}$)
- Inverted E_T^{miss} cut
- At least one jet with p_T > 40 GeV

ヘロア 人間 アイヨア・