Dark Matter Searches with Mono-X Signatures at the ATLAS Experiment

Evidence for Dark Matter

- Astrophysical and cosmological anomalies
 - Inconsistent with current understanding of gravitation & cosmology
 - Bullet cluster
- Dark matter (DM)
 - Nonluminous, noninteracting particle
 - Universe is 5% ordinary matter and 26% dark matter [arXiv:1502.01582]
- Many DM theories
 - Black holes, axions, unknown particles, etc
- Weakly Interacting Massive Particles
 - Assume that DM couples weakly to the Standard Model (SM)
 - Produced in early universe
 - Thermal relic density

Detecting Dark Matter

DM-nucleon scattering

Indirect Detection DM-DM annihilation

Detecting Dark Matter

Direct Detection DM-nucleon scattering


```
Indirect Detection
DM-DM annihilation
```


 $g, \gamma, W, Z, H, \dots$

 \bar{q}

Mono-X Signature DM pair production in association with X (jet, photon, etc) Need X for event to be visible in detector

Emma Tolley — Harvard University — 13 Apr 2016

DM

Simplified Models

- Mono-X search results interpreted in simplified model framework
 - General framework valid at high Q² (unlike EFT)

- Mediator particle connects the SM quarks to DM particles
 - Axial Vector, Pseudoscalar, etc
- Model depends on four parameters:
 - DM mass
 - Mediator mass
 - SM-mediator coupling
 - DM-mediator coupling

[ArXiv:1506.03116 - Simplified Models for DM Searches at the LHC]

Mono-X Searches

Non-interacting DM particles➡ Missing transverse energy (MET)

General Analysis Strategy

- Require MET
- Select for X
- Veto other objects
- Additional cuts to suppress backgrounds
- Data-driven techniques to estimate background
 - Invert vetoes

Mono-X Searches

ATLAS 13 TeV Mono-X Searches

Mono-jet →Jet from initial state radiation (ISR) →Most sensitive mono-X channel

Mono-W/Z → ISR Boson → Probe DM coupling to Z

[ATLAS-CONF-2015-080]

Mono-photon

- ➡ ISR photon
- ➡ Probe DM coupling to photons

[arXiv:1604.01306]

Mono-Higgs → DM coupling to Higgs

 $[H \rightarrow \gamma\gamma: ATLAS-CONF-2016-011]$ $[H \rightarrow bb: ATLAS-CONF-2016-019]$ $[H \rightarrow ZZ: ATLAS-CONF-2015-059]$

 Most sensitive mono-X channel
 → X (jet) has α_s coupling to initial state quarks

- W+jets & Z+jets background estimated with simultaneous fit in signal and control regions
 - Three control regions (with 1μ, 1e, or 2μ)
 - Muons treated as invisible in MET calculation
 - MET ~ Boson p_T in muon control regions
 - Fit for three *MET-dependent* normalization factors
 - MET-dependent: reduce sensitivity to boson \textbf{p}_{T} modeling
 - Use $W \rightarrow \mu v$ to model $Z \rightarrow v v$
 - Systematic uncertainty for W/Z transfer
- Other backgrounds
 - Non-collision background (data)
 - Multijet background (data)
 - Z→ee, top, diboson (MC)
- Dominant uncertainties
 - statistical (3-10%), top (~3%), boson+jet modeling (2-4%)

Signal Region MET

Limits as a function of DM & mediator mass → Axial vector mediator, fixed values of g_{DM} & g_{SM} DM excluded up to 250GeV for 1 TeV mediator

LHC limits reinterpreted as limit on DM-proton scattering cross-section → LHC complementary at low m_{DM}

Parameter values & limit interpretation as recommended by the LHC Dark Matter Working Group [ArXiv:1603.04156]

On-shell → LHC exclusion

On-shell → LHC exclusion

Off-shell

- Mediator decay to DM suppressed
- Relic DM underproduced

On-shell ➡ LHC exclusion

Off-shell

- Mediator decay to DM suppressed
- Relic DM underproduced

Heavy mediator

- Mediator production suppressed
- → Relic DM overproduced

Mono-Photon

Signal Region Definition

MET > 150 GeV

Up to 1 jet with

pT > 30 GeV

Δφ between MET & photon or any jet > 0.4

Veto e & µ

Photon pT > 150 GeV |eta| < 2.37 Quality (tight) & isolation requirements

Lower statistics with respect to mono-jet

 \blacktriangleright X (photon) has $\alpha_{\rm EM}$ coupling to initial state quarks

Sensitive to $(\gamma\gamma \chi \chi)$ effective vertex

➡ Galactic center excess

Mono-Photon

- Background estimated with simultaneous fit to four CRs
 - $Z+\gamma \rightarrow 2e$ and 2μ CRs
 - W+ $\gamma \rightarrow 1\mu$ CR
 - γ +jets $\rightarrow \gamma$ +jet CR (85 < MET < 110 GeV, $\Delta \phi$ (MET, γ)<3.0)
- Fake γ estimation
 - Electrons: derive e->γ misID factor in ee vs eγ events
 - Jets: ABCD method using photon quality & isolation
- Dominant Uncertainties
 - statistics (9%), e->γ fake factor (6%)

Inclusive regions => no shape analysis

Mono-Photon

Limits as a function of DM & mediator mass
Axial vector mediator, fixed coupling values
Excludes subset of mono-jet space

➡ DM excluded up to 150 GeV for 500 GeV Med.

Mono-W/Z (hadronic)

Signal Region Definition

Track MET > 30 GeV

MET > 250 GeV

Δφ between MET & track MET < pi/2

Veto e & μ

Large-radius jet

 Identify hadronic W/Z decay using jet mass & substructure (bifurcation variable D2) Backgrounds constrained in dedicated CRs

➡ Z+jets (2muon)

W+jets (1 muon & no b-jet)
 ttbar (1 muon & 1 b-jet)
 Simultaneous fit with three normalization factors
 (Z, W, ttbar)

Largest uncertainty from modeling of large-radius jet parameters ➡ Uncertainties on D2 ~ 10%

Signal Region MET

Mono-W/Z (hadronic)

Signal strength limits as a function of DM & mediator mass → Vector mediator, fixed values of g_{DM} & g_{SM}

Mono-H

Multiple Mono-H final states $H \rightarrow \gamma \gamma$ $H \rightarrow bb$ $H \rightarrow ZZ \rightarrow 4\ell$

Mono-H($\rightarrow \gamma \gamma$)

Four Signal Regions

1 - MET > 100 GeV & $p_T^{\gamma\gamma} > 100 \text{ GeV}$

- 2 MET > 100 GeV & $p_{T}^{\gamma\gamma}$ < 100 GeV
- 3 50 < MET < 100 GeV & $p_T^{\text{all jets+}\gamma} > 40 \text{ GeV}$
- 4 $p_T^{\gamma\gamma}$ > 15 GeV

Background estimated with function fit to $m_{\nu\nu}$ distribution

- ➡ Main uncertainties from gg->H (50%)
- No excess observed

Mono-H(→γγ)

→ Vector mediator, fixed values of g_{DM} & g_{SM}

Mono-H(→bb)

Merged Signal Region

Resolved Signal Region

MET > 150 GeV & MET < 500 GeV At least 2 jets

MET > 500 GeV One large-radius jet associated with two track jets

Signal Region MET (2 b-tags)

Background estimated with simultaneous shape fit to jet mass distribution

- 1 muon (invisible in MET) control region constrains W+jets & ttbar
- ➡ 2 lepton control region constrains Z+jets
- Signal & control regions further divided into 0-, 1-, and 2-b-tag regions
 Tagging b-jets: 70% identification efficiency

Main systematic uncertainties from b-tagging efficiency (~5%) & jet mass/energy calibration (~5%)

Mono-H(→bb)

Limits as a function of DM & mediator mass → Vector mediator, fixed values of g_{DM} & g_{SM} DM excluded up to 200 GeV for 500 GeV mediator

Mono-H(→ZZ)

- Higgs and ZZ* background from simulation
- Z+jets and ttbar estimated with simultaneous fit in dedicated control regions
 - ℓℓ + μμ CRs: invert lepton impact parameters, flavor pairs, isolation to enrich in backgrounds
- Main uncertainty from jet energy scale (~ 50%)

Mono-H(→ZZ)

Cross section limits as a function mediator mass for $m_{DM} = 1 \text{ GeV}$

Mono-X & Dijet

Dijet limits can also constrain DM simplified models

putting limits on mediator mass

Exclusion power depends on the model couplings: \rightarrow Monojet xsec ~ $g_q^2 g_x^2$ \rightarrow Dijet xsec ~ g_q^4

[reference to be added]

Conclusions

- DM searches at 13TeV are just starting!
 - First mono-X search results
- Simplified models provide common interpretation framework that allows ATLAS results to be compared with:
 - ➡ Dijet resonance searches
 - Direct & indirect detection experiments
 - ➡ Relic density
- Expecting 10-30 fb⁻¹ of data in 2016
 - Increase discovery potential and exclusion power of DM searches

Backup

EFT vs Simplified Models

Effective field theories used at 8TeV

- ► Most general model possible
- \blacktriangleright Only parameters are m_{DM} and Λ

However, EFT is only valid if $Q^2 < 4\pi\Lambda$

 \Rightarrow At the LHC Q² ~ jet p_T ~ 200 GeV

➡ Can truncate when $Q^2 > \Lambda$ but requires knowing masses, couplings, etc Simplified models

- ► More parameters
- ► Valid in all regions of phase space

Narrow Width Mediator

Mediator in simplified model assumed to have minimal width

only couples to quarks & DM (except in mono-H models)
As such, width depends on mediator mass, DM mass, and coupling values

Mono-Jet Bkg Estimation

Mono-Photon Bkg Estimation

Mono-Jet Limits

Mono-jet limits with fixed mediator & DM mass and variable coupling

Mono-H Models

Other models:

DM & additional Higgs doublet

Emm