Search for the 125 GeV Higgs Boson

at 13 TeV in diboson decay channels

by the ATLAS collaboration

Josefina Alconada Verzini

on behalf of the ATLAS Collaboration DIS 2016 - 12/04/2016

overview

- production modes
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$
- analyses description
- fiducial and total cross sections
- cross section combination
- $H \rightarrow WW^*$ (8 TeV) fiducial cross section
- $H(\rightarrow \gamma \gamma) + MET$
- $hh \rightarrow b\bar{b}\gamma\gamma$

Higgs production at the LHC

• Only one in 10¹⁰ events will be a Higgs boson

Higgs diboson decays

$$\begin{array}{c|c} \mathsf{H} \rightarrow \mathsf{Z}\mathsf{Z}^* \rightarrow 4\ell & \mathsf{H} \rightarrow \gamma\gamma & \mathsf{H} \rightarrow \mathsf{W}\mathsf{W}^* \rightarrow 2\ell 2\nu & \mathsf{H} \rightarrow \mathsf{Z}\gamma \\ \hline \mathbf{13} \, \mathsf{TeV} & \end{array}$$

•Excellent mass resolution: $\gamma\gamma$ and ZZ*

•Large cross section: WW*

$H \! ightarrow \! \gamma \gamma$ conf-2015-060

event selection

- o Two highest- p_{7} photons: $|\eta| < 2.37$, exclude $1.37 < |\eta| < 1.52$
- o Relative- $p_T : E_T^{\gamma 1}/m_{\gamma \gamma} \ge 0.35 E_T^{\gamma 2}/m_{\gamma \gamma} \ge 0.25$
- Mass window: 105 GeV $\leq m_{\gamma\gamma} \leq$ 160 GeV
- $\begin{array}{l} \circ \text{ Photon isolation: } \textit{E}_{T,\textit{iso}}^{\textit{calo}} < 0.065 \times \textit{E}_{T}^{\gamma} \\ \textit{E}_{T,\textit{iso}}^{\textit{track}} < 0.05 \times \textit{E}_{T}^{\gamma} \end{array}$

photon identification

 transverse shower shape in 2nd layer of Ecal: consistent with that expected for a single EM shower

 \circ high-granularity 1st layer of Ecal: discriminate single γ from overlapping $\gamma {\rm s}$ coming from π^0

5

 $\circ \varepsilon_{\rm ID}^{\rm conv} \sim 98\% \qquad \circ \varepsilon_{\rm ID}^{\rm unconv} \sim 94\%$

$extsf{H} o \gamma \gamma$ Vertex Identification

$m_{\gamma\gamma}$ calculation: precise knowledge of the position of the diphoton production

MVA

- $\circ \sum p_T^2$ of vertex tracks
- $\sum p_T$ of vertex tracks
- diphoton balancing with vertex tracks
- trajectory from calo segmentation

Efficiency to select a diphoton vertex within 0.3 mm of the production vertex • vertex selection inclusive efficiency: 87%

$H\! ightarrow\gamma\gamma$ s+b modelling

signal shape: MC Gauss+CB **background shape:** MC exp (2nd order polynomial)

• background model bias: s+b fit to bkg only sample → signal events from fit: N_{sp} main systematic uncertainties:

• photon energy resolution • bkg modelling uncertainty: 8% $N_{exp} = 143 \pm 71 (stat) {+39 \atop -6} (syst.)$ $N_{S} = 113 \pm 74 (stat) {+43 \atop -25} (syst.)$

7

$\begin{array}{c} H \longrightarrow ZZ^* \longrightarrow 4\ell \text{ conf-2015-059} \\ \bullet \text{RUN 1 S/B: } 1.7 & \bullet \text{RUN 2 S/B 2.2} \end{array}$

Two same-flavour opposite-sign lepton pairs

•
$$\ell = e, \mu$$

• $e(\mu) p_T(E_T) > 7$ (6) GeV, $|\eta| < 2.47$ (2.7)
• Leading three leptons: $p_T > 20, 15, 10$ GeV
• $50 < m_{Z1} < 106$ GeV, $12-50 < m_{Z2} < 115$ GeV
• FSR γ correction, Z mass constraint: 15% improvement on resolution

$H\!\rightarrow\! ZZ^* \rightarrow 4\ell \text{ conf-2015-059}$

main background: non-resonant ZZ* (irreducible)

- simulation shape prediction
- normalisation checked in *m*_{4ℓ} sidebands
 smaller (reducible) backgrounds: Z+jets, tt
- measured from control regions

main systematic uncertainties: lepton efficiency (5.6%), luminosity (5%)

$118 < m_{4\ell} < 129 ~{\rm GeV}$	
Signal (full	5.06 ± 0.60
mass range)	
Signal	$\textbf{4.57} \pm \textbf{0.54}$
ZZ*	$\textbf{1.74} \pm \textbf{0.19}$
Z+j ,tt̄,tt̄V	0.34 ± 0.06
VVV,WZ	
S/B	2.2
Expected	6.65 ± 0.58
Observed	4

cross sections: $\gamma\gamma$ and ZZ*

• Fiducial σ extracted for $\gamma\gamma$ and ZZ* • Measurements extrapolated to total σ and combined

Fiducial selection: designed to closely replicate the analysis selection at particle level

 $C = \frac{\# \text{ of selected reco events}}{\# \text{ of particle level events}}$

cross sections: combination

o ATLAS-CONF-2015-069

• maximise the product of individual likelihoods $\mathcal{L}_{TOT} = \mathcal{L}_{\gamma\gamma} \times \mathcal{L}_{4\ell} \times \prod_k \mathcal{G}(\theta_k; 0, 1)$

- $\circ~$ compatibility 13 TeV measurement / SM prediction: 1.3 $\sigma~$
- combined observation significance: 3.4 σ (expected) 1.4 σ (observed)
- combined upper limit of 68 pb at 95% confidence level on the σ_{TOT}

	13 TeV
Acceptance factor	
$H \rightarrow \gamma \gamma$	0.570 ± 0.006
$H \to ZZ^* \to 4\ell$	0.427 ± 0.006
Fiducial cross section [fb]	
$H \rightarrow \gamma \gamma$	52^{+40}_{-37}
$H \to Z Z^* \to 4\ell$	$0.6^{+1.3}_{-0.9}$
Total cross section [pb]	
$H \rightarrow \gamma \gamma$	40 ⁺³¹ ₋₂₈
$H \to Z Z^* \to 4\ell$	12^{+25}_{-16}
Combination	24 $^{+20}_{-17}$ (stat.) $^{+7}_{-3}$ (syst.)
LHC-XS	$50.9^{+4.5}_{-4.4}$

• 8 TeV results just submitted! (Phys. Rev. D 92, 012006 (2015))

1 e and 1 μ with oposite charge

 $\begin{array}{l} \circ m_{\ell\ell} > 10 \ \text{GeV} \\ \circ p_{f}^{\textit{god.}\ell} > 22 \ \text{GeV} \ p_{s}^{\textit{sublead.}\ell} > 15 \ \text{GeV} \\ \circ \ 3 \ \text{signal regions:} \ N_{jet} = 0, 1, \geq 2 \\ \circ \ \text{dominant background:} \ \text{WW for } N_{jet} = 0 \\ \circ \ \text{top-quark background:} \ N_{jet} \geq 2 \\ \circ \ \text{mixture:} \ N_{iet} = 1 \end{array}$

$$\sigma^{fid}_{ggF}=36.0\pm9.7~{
m fb}$$
LHC-XS: $\sigma^{fid}_{ggF}=25.1\pm2.6~{
m fb}$

12

$H \rightarrow WW^* \rightarrow e \nu \mu \nu$

${\sf H}(ightarrow\gamma\gamma)+\textit{MET}$ conf-2016-011

Two theory models:

heavy scalar \rightarrow H + pair of DM candidates

massive vector mediator emits H and decays into a pair of DM candidates

same selection as γγ analysis
divide events into categories:
increase sensitivity to two signal models

category	$E_T^{miss}[GeV]$	$p_T^{hard}[GeV]$	$p_T^{\gamma\gamma}[GeV]$
High ${\it E}_{\it T}^{miss}$, high ${\it p}_{\it T}^{\gamma\gamma}$	> 100	-	>100
High E_T^{miss} , low $p_T^{\gamma\gamma}$	> 100	-	\leq 100
Intermediate High E_T^{miss}	$> 50 \leq 100$	> 40	-
Rest		-	> 15

signal model: MC double sided CB bkg model: same as $\gamma\gamma$ analysis

${\sf H}(ightarrow\gamma\gamma)+\textit{MET}$ conf-2016-011

• heavy scalar production model: 29.6 fb ($m_H = 270~GeV$) 95% CL upper limit on $\sigma(pp \rightarrow h\chi\chi) \times BR(h \rightarrow \gamma\gamma)$

• DM production involving a massive mediator model: 5.3 fb $(m_{med} = 10 \text{ GeV} \text{ and } m_D M = 1 \text{ GeV})$ 95% CL upper limit on $\sigma(pp \rightarrow h\chi\chi) \times BR(h \rightarrow \gamma\gamma)$

hh $ightarrow bar{b}\gamma\gamma$ conf-2016-004

- resonant and non-resonant processes
- ullet destructive interference: low σ
- $bar{b}$ large BR, $\gamma\gamma$ good resolution
- 2.4 σ excess in run-1

fit in O-tag region obtain continum bkg shape

process	0-tag	2-tag
continuum background	35.8 ± 2.1	1.63 ± 0.30
SM single Higgs	1.8 ± 1.5	0.14 ± 0.05
SM di-Higgs	< 0.001	0.027±0.006

o same as run-1 (except performance) o $\gamma\gamma$ similar to $\gamma\gamma$ analysis o require 2 b-jets, 95 GeV < $m_{b\bar{b}}$ < 135 GeV o events passing selection: 2-tag o events passing selection but no b-jets: 0-tag

limits at 95% CL

- non-resonant
 - $\circ\sigma < 3.9\, pb$ (obs)
 - $\circ\sigma < 5.4\, pb$ (exp)
- • $X \rightarrow hh$
 - $\sigma < 7 \dots 4 pb$ (obs) for $m_{\chi} = 275 \dots 400$ GeV $\sigma < 7.5 pb \dots 4.4 pb$ (exp) same m_{χ} region

conclusions

first 13 TeV results of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$

- results consistent with SM
- limited statistics in 2015
- $H \rightarrow WW^* 8 \text{ TeV}$
 - fiducial σ just submitted!

limits for 13 TeV searches:

- $\gamma\gamma$ + MET
- $hh \rightarrow b\bar{b}\gamma\gamma$

looking forward to 2016 collisions!

- properties measurement
- differential cross sections

